Abstract

Recent developments in semi-active control technologies enhance the possibility of an effective response reduction during a wide range of dynamic loading conditions. Most semi-active control schemes employ magnetorheological dampers (MRDs) as actuators. These devices exhibit nonlinear and hysterical behavior that complicates reactive force estimation to compensate for disturbances. In this paper, we present a novel robust schema to estimate MRD forces using a complex value convolutional neural network (CV-CNN) to overcome these problems. CV-CNN utilizes random complex value convolutional filters as parameters to reduce the measured noise by combining the training stage and the max-by-magnitude operation. Furthermore, CV-CNN is a hysteresis-model-free strategy that overcomes the parameterization in nonlinear systems. The proposed CV-CNN only requires displacement and voltage measurements for force estimation. Different metrics are used to compare results between the CV-CNN, genetic algorithm (GA), particle swarm optimization (PSO), and shallow neural network (SNN). Experimental results show the potential of the proposed CV- CNN for practical applications due to its simplicity and robustness. The CV-CNN computational time is less than that of GA and PSO. In the training stage, the CV-CNN uses 0.7% of GA's time and 1.4% of PSO. Although SNN uses 5.5% of the time consumed by the CV-CNN, the latter performs the force estimation for MRD better; its mean square error is 78.3% lower than the GA's and PSO's, and 71.4% lower than SNN's.

References

1.
Spencer
,
B.
, Jr.
,
Dyke
,
S.
,
Sain
,
M.
, and
Carlson
,
J.
,
1997
, “
Phenomenological Model for Magnetorheological Dampers
,”
J. Eng. Mech.
,
123
(
3
), pp.
230
238
.10.1061/(ASCE)0733-9399(1997)123:3(230)
2.
Ferreira
,
F.
,
Moutinho
,
C.
,
Cunha
,
A.
, and
Caetano
,
E.
,
2018
, “
Proposal of Optimum Tuning of Semiactive TMDs Used to Reduce Harmonic Vibrations Based on Phase Control Strategy
,”
Struct. Control Health Monit.
,
25
(
4
), p.
e2131
.10.1002/stc.2131
3.
Zhang
,
C.
, and
Xiao
,
J.
,
2018
, “
Chaotic Behavior and Feedback Control of Magnetorheological Suspension System With Fractional-Order Derivative
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p. 021007.10.1115/1.4037931
4.
Fakhraei
,
J.
,
Khanlo
,
H. M.
, and
Dehghani
,
R.
,
2017
, “
Nonlinear Dynamic Behavior of a Heavy Articulated Vehicle With Magnetorheological Dampers
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p. 041017.10.1115/1.4035669
5.
Kavyashree
,
B.
,
Patil
,
S.
, and
Rao
,
V. S.
,
2021
, “
Review on Vibration Control in Tall Buildings: From the Perspective of Devices and Applications
,”
Int. J. Dyn. Control
,
9
(
3
), pp.
1316
1331
.10.1007/s40435-020-00728-6
6.
Nishitani
,
A.
, and
Inoue
,
Y.
,
2001
, “
Overview of the Application of Active/Semiactive Control to Building Structures in Japan
,”
Earthquake Eng. Struct. Dyn.
,
30
(
11
), pp.
1565
1574
.10.1002/eqe.81
7.
Zapom
E ˇ
l
,
J.
,
Ferfecki
,
P.
, and
Kozánek
,
J.
,
2017
, “
Modelling of Magnetorheological Squeeze Film Dampers for Vibration Suppression of Rigid Rotors
,”
Int. J. Mech. Sci.
,
127
, pp.
191
197
.10.1016/j.ijmecsci.2016.11.009
8.
Nguyen
,
Q.
,
Choi
,
S.-B.
, and
Woo
,
J.
,
2014
, “
Optimal Design of Magnetorheological Fluid-Based Dampers for Front- Loaded Washing Machines
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
228
(
2
), pp.
294
306
.10.1177/0954406213485908
9.
Sun
,
S.
,
Ning
,
D.
,
Yang
,
J.
,
Du
,
H.
,
Zhang
,
S.
, and
Li
,
W.
,
2016
, “
A Seat Suspension With a Rotary Magnetorheological Damper for Heavy Duty Vehicles
,”
Smart Mater. Struct.
,
25
(
10
), p.
105032
.10.1088/0964-1726/25/10/105032
10.
Khiavi
,
A. M.
,
Mirzaei
,
M.
, and
Hajimohammadi
,
S.
,
2014
, “
A New Optimal Control Law for the Semi-Active Suspension System Considering the Nonlinear Magneto-Rheological Damper Model
,”
J. Vib. Control
,
20
(
14
), pp.
2221
2233
.10.1177/1077546313478292
11.
Halsey
,
T. C.
,
1992
, “
Electrorheological Fluids
,”
Science
,
258
(
5083
), pp.
761
766
.10.1126/science.258.5083.761
12.
Dahl
,
P. R.
,
1968
, “A Solid Friction Model,” Aerospace Corp, El Segundo, CA, Report No. TOR-0158(3107-18)-1
13.
Wen
,
Y.-K.
,
1976
, “
Method for Random Vibration of Hysteretic Systems
,”
J. Eng. Mech. Div.
,
102
(
2
), pp.
249
263
.10.1061/JMCEA3.0002106
14.
De Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
15.
Jiménez
,
R.
, and
Álvarez-Icaza
,
L.
,
2005
, “
Lugre Friction Model for a Magnetorheological Damper
,”
Struct. Control Health Monit.
,
12
(
1
), pp.
91
116
.10.1002/stc.58
16.
Kwok
,
N.
,
Ha
,
Q.
,
Nguyen
,
T.
,
Li
,
J.
, and
Samali
,
B.
,
2006
, “
A Novel Hysteretic Model for Magnetorheological Fluid Dampers and Parameter Identification Using Particle Swarm Optimization
,”
Sens. Actuators A Phys.
,
132
(
2
), pp.
441
451
.10.1016/j.sna.2006.03.015
17.
Case
,
D.
,
Taheri
,
B.
, and
Richer
,
E.
,
2014
, “
Dynamical Modeling and Experimental Study of a Small-Scale Magnetorheological Damper
,”
IEEE/ASME Trans. Mechatronics
,
19
(
3
), pp.
1015
1024
.10.1109/TMECH.2013.2265701
18.
Graczykowski
,
C.
, and
Pawłowski
,
P.
,
2017
, “
Exact Physical Model of Magnetorheological Damper
,”
Appl. Math. Modell.
,
47
, pp.
400
424
.10.1016/j.apm.2017.02.035
19.
Bui
,
Q.
,
Bai
,
X.
, and
Hung Nguyen
,
Q.
,
2021
, “
Dynamic Modeling of MR Dampers Based on Quasi–Static Model and Magic Formula Hysteresis Multiplier
,”
Eng. Struct.
,
245
, p.
112855
.10.1016/j.engstruct.2021.112855
20.
Smyth
,
A. W.
,
Masri
,
S. F.
,
Chassiakos
,
A. G.
, and
Caughey
,
T. K.
,
1999
, “
On-Line Parametric Identification of Mdof Nonlinear Hysteretic Systems
,”
J. Eng. Mech.
,
125
(
2
), pp.
133
142
.10.1061/(ASCE)0733-9399(1999)125:2(133)
21.
Bahar
,
A.
,
Pozo
,
F.
,
Acho
,
L.
,
Rodellar
,
J.
, and
Barbat
,
A.
,
2010
, “
Parameter Identification of Large-Scale Magnetorheological Dampers in a Benchmark Building
,”
Comput. Struct.
,
88
(
3–4
), pp.
198
206
.10.1016/j.compstruc.2009.10.002
22.
Kolansky
,
J.
, and
Sandu
,
C.
,
2018
, “
Enhanced Polynomial Chaos-Based Extended Kalman Filter Technique for Parame- Ter Estimation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p. 021012.10.1115/1.4031194
23.
Li
,
D.
, and
Wang
,
Y.
,
2021
, “
Parameter Identification of a Differentiable Bouc-Wen Model Using Constrained Extended Kalman Filter
,”
Struct. Health Monit.
,
20
(
1
), pp.
360
378
.10.1177/1475921720929434
24.
Muthalif
,
A. G.
,
Razali
,
M. K. M.
,
Nordin
,
N. D.
, and
Hamid
,
S. B. A.
,
2021
, “
Parametric Estimation From Empirical Data Using Particle Swarm Optimization Method for Different Magnetorheological Damper Models
,”
IEEE Access
,
9
, pp.
72602
72613
.10.1109/ACCESS.2021.3080432
25.
Deshmukh
,
V.
,
2008
, “
Spectral Collocation-Based Optimization in Parameter Estimation for Nonlinear Time- Varying Dynamical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p. 011010.10.1115/1.2815335
26.
Azar
,
B. F.
,
Veladi
,
H.
,
Talatahari
,
S.
, and
Raeesi
,
F.
,
2020
, “
Optimal Design of Magnetorheological Damper Based on Tuning Bouc-Wen Model Parameters Using Hybrid Algorithms
,”
KSCE J. Civ. Eng.
,
24
(
3
), pp.
867
878
.10.1007/s12205-020-0988-z
27.
Yarali
,
E.
,
Mohammadi
,
A.
,
Mafakheri
,
S.
,
Baghani
,
M.
, and
Adibi
,
H.
,
2019
, “
Mathematical Modeling and Experimental Evaluation of a Prototype Double-Tube Magnetorheological Damper
,”
SN Appl. Sci.
,
1
(
11
), pp.
1
10
.10.1007/s42452-019-1408-1
28.
Orjuela-Cañón
,
A. D.
,
Posada-Quintero
,
H. F.
,
Valencia
,
C. H.
, and
Mendoza
,
L.
,
2018
, “
On the Use of Neuroevolutive Methods as Support Tools for Diagnosing Appendicitis and Tuberculosis
,”
Workshop on Engineering Applications
, Medellín, Colombia,
Springer
, Berlin, pp.
171
181
.
29.
Zhu
,
H.
,
Rui
,
X.
,
Yang
,
F.
,
Zhu
,
W.
, and
Wei
,
M.
,
2019
, “
An Efficient Parameters Identification Method of Normalized Bouc-Wen Model for MR Damper
,”
J. Sound Vib.
,
448
, pp.
146
158
.10.1016/j.jsv.2019.02.019
30.
Han
,
Y.
,
Dong
,
L.
, and
Yan
,
Y.
,
2021
, “
A New High-Precision General Inverse Model Based on Deep Learning for Magnetorheological Damper
,”
IEEE Access
,
9
, pp.
66864
66877
.10.1109/ACCESS.2021.3076299
31.
Metered
,
H.
,
Bonello
,
P.
, and
Oyadiji
,
S.
,
2010
, “
The Experimental Identification of Magnetorheological Dampers and Evaluation of Their Controllers
,”
Mech. Syst. Signal Process.
,
24
(
4
), pp.
976
994
.10.1016/j.ymssp.2009.09.005
32.
Bahiuddin
,
I.
,
Imaduddin
,
F.
,
Mazlan
,
S. A.
,
Ariff
,
M. H.
,
Mohmad
,
K. B.
, and
Choi
,
S.-B.
,
2021
, “
Accurate and Fast Estimation for Field-Dependent Nonlinear Damping Force of Meandering Valve-Based Magnetorheological Damper Using Extreme Learning Machine Method
,”
Sens. Actuators A Phys.
,
318
, p.
112479
.10.1016/j.sna.2020.112479
33.
Zapateiro
,
M.
,
Luo
,
N.
,
Karimi
,
H.
, and
Vehi
,
J.
,
2009
, “
Vibration Control of a Class of Semiactive Suspension System Using Neural Network and Backstepping Techniques
,”
Mech. Syst. Signal Process.
,
23
(
6
), pp.
1946
1953
.10.1016/j.ymssp.2008.10.003
34.
Chang
,
C.-C.
, and
Zhou
,
L.
,
2002
, “
Neural Network Emulation of Inverse Dynamics for a Magnetorheological Damper
,”
J. Struct. Eng.
,
128
(
2
), pp.
231
239
.10.1061/(ASCE)0733-9445(2002)128:2(231)
35.
Li
,
L.
,
Song
,
G.
, and
Ou
,
J.
,
2010
, “
Nonlinear Structural Vibration Suppression Using Dynamic Neural Network Observer and Adaptive Fuzzy Sliding Mode Control
,”
J. Vib. Control
,
16
(
10
), pp.
1503
1526
.10.1177/1077546309103284
36.
Uz
,
M. E.
, and
Hadi
,
M. N.
,
2014
, “
Optimal Design of Semi Active Control for Adjacent Buildings Connected by MR Damper Based on Integrated Fuzzy Logic and Multi- Objective Genetic Algorithm
,”
Eng. Struct.
,
69
, pp.
135
148
.10.1016/j.engstruct.2014.03.006
37.
Hershey
,
S.
,
Chaudhuri
,
S.
,
Ellis
,
D. P.
,
Gemmeke
,
J. F.
,
Jansen
,
A.
,
Moore
,
R. C.
,
Plakal
,
M.
, et al.,
2017
, “
CNN Architectures for Large-Scale Audio Classification
,”
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
IEEE
, New Orleans, LO, Mar. 5–9, pp.
131
135
.
38.
Hussain
,
M.
,
Bird
,
J. J.
, and
Faria
,
D. R.
,
2018
, “
A Study on CNN Transfer Learning for Image Classification
,”
UK Workshop on Computational Intelligence
,
Springer
, Nottingham, UK, pp.
191
202
.
39.
Wang
,
H.
,
Tao
,
Z.
,
Shi
,
L.
, and
Kang
,
Z.
,
2019
, “
Fault Evolution Characteristic Analysis of Planetary Gear Based on Multidimensional Nonlinear Frequency Response
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
4
), p. 041007.10.1115/1.4042634
40.
Morales-Valdez
,
J.
,
Lopez-Pacheco
,
M.
, and
Yu
,
W.
,
2020
, “
Automated Damage Location for Building Structures Using the Hysteretic Model and Frequency Domain Neural Networks
,”
Struct. Control Health Monit.
,
27
(
9
), p.
e2584
.10.1002/stc.2584
41.
Livieris
,
I. E.
,
Pintelas
,
E.
, and
Pintelas
,
P.
,
2020
, “
A CNN—LSTM Model for Gold Price Time-Series Forecasting
,”
Neural Comput. Appl.
,
32
(
23
), pp.
17351
17360
.10.1007/s00521-020-04867-x
42.
Hu
,
J.
,
Zhong
,
Y.
, and
Yang
,
M.
,
2021
, “
Hysteresis Modeling of Piezoelectric Micro-Positioning Stage Based on Convolutional Neural Network
,”
Proc. Inst. Mech. Eng., Part I J. Syst. Control Eng.
,
235
(
2
), pp.
170
179
.10.1177/0959651820950845
43.
Zhang
,
Y.
,
Gao
,
J.
,
Yang
,
H.
, and
Hao
,
L.
,
2019
, “
A Novel Hysteresis Modelling Method With Improved Generalization Capability for Pneumatic Artificial Muscles
,”
Smart Mater. Struct.
,
28
(
10
), p.
105014
.10.1088/1361-665X/ab3770
44.
Kim
,
T.
,
Kwon
,
O.-S.
, and
Song
,
J.
,
2019
, “
Response Prediction of Nonlinear Hysteretic Systems by Deep Neural Networks
,”
Neural Networks
,
111
, pp.
1
10
.10.1016/j.neunet.2018.12.005
45.
Guberman
,
N.
,
2016
, “
On Complex Valued Convolutional Neural Networks
,” Master’s thesis, The HebrewUniversity of Jerusalem, arXiv preprint arXiv:
1602.09046
.10.48550/ARXIV.1602.09046
46.
Tan
,
X.
,
Li
,
M.
,
Zhang
,
P.
,
Wu
,
Y.
, and
Song
,
W.
,
2020
, “
Complex-Valued 3-D Convolutional Neural Network for Polsar Image Classification
,”
IEEE Geosci. Re- Mote Sensing Lett.
,
17
(
6
), pp.
1022
1026
.10.1109/LGRS.2019.2940387
47.
YuQing
,
W.
,
WenKai
,
L.
,
JinLin
,
L.
,
Meng
,
Z.
, and
YongKang
,
M.
,
2019
, “
Random Seismic Noise Attenuation Based on Data Augmentation and CNN
,”
Chin. J. Geophys.
,
62
(
1
), pp.
421
433
.http://en.dzkx.org/article/doi/10.6038/cjg2019M0385
48.
Levin
,
A. U.
, and
Narendra
,
K. S.
,
1996
, “
Control of Nonlinear Dynamical Systems Using Neural Networks. II. Observability, Identification, and Control
,”
IEEE Trans. Neural Networks
,
7
(
1
), pp.
30
42
.10.1109/72.478390
49.
SHIMADZU, Shimadzu Repository
,
2010
, AG-I, Series Autograph Universal Testing Machines Datasheet, 6 Rev.3, Kyoto, Japan..
50.
Lopez-Pacheco
,
M.
, and
Yu
,
W.
,
2022
, “
Complex Valued Deep Neural Networks for Nonlinear System Modeling
,”
Neural Process. Lett.
,
54
(
1
), pp.
559
580
.10.1007/s11063-021-10644-1
You do not currently have access to this content.