Abstract

This study is dedicated to the computation and analysis of solitonic structures of a nonlinear Sasa–Satsuma equation that comes in handy to understand the propagation of short light pulses in the monomode fiber optics with the aid of beta derivative and truncated M- fractional derivative. We employ a new direct algebraic technique for the nonlinear Sasa–Satsuma equation to derive novel soliton solutions. A variety of soliton solutions are retrieved in trigonometric, hyperbolic, exponential, rational forms. The vast majority of obtained solutions represent the lead of this method on other techniques. The prime advantage of the considered technique over the other techniques is that it provides more diverse solutions with some free parameters. Moreover, the fractional behavior of the obtained solutions is analyzed thoroughly by using two and three-dimensional graphs. This shows that for lower fractional orders, i.e., β=0.1, the magnitude of truncated M-fractional derivative is greater whereas for increasing fractional orders, i.e., β=0.7 and β=0.99, the magnitude remains the same for both definitions except for a phase shift in some spatial domain that eventually vanishes and two curves coincide.

References

1.
Guo
,
B.
, and
Xueke
,
P.
, and
2015
,
Fenghui Huang. Fractional Partial Differential Equations and Their Numerical Solutions
,
World Scientific
, Singapore.
2.
Jafari
,
H.
, and
Seifi
,
S.
,
2009
, “
Homotopy Analysis Method for Solving Linear and Nonlinear Fractional Diffusion-Wave Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
2006
2012
.10.1016/j.cnsns.2008.05.008
3.
Singh
,
J.
,
Kumar
,
D.
, and
Kılıçman
,
A.
,
2014
, “
Numerical Solutions of Nonlinear Fractional Partial Differential Equations Arising in Spatial Diffusion of Biological Populations
,”
Abstract Appl. Anal.
,
2014
, pp.
1
12
.10.1155/2014/535793
4.
Hassan
,
S. Z.
, and
Abdelrahman
,
M. A.
,
2018
, “
Solitary Wave Solutions for Some Nonlinear Time-Fractional Partial Differential Equations
,”
Pramana
,
91
(
5
), pp.
1
9
.10.1007/s12043-018-1636-8
5.
Cattaneo
,
G.
,
Formenti
,
E.
,
Margara
,
L.
, and
Mauri
,
G.
,
1999
, “
On the Dynamical Behavior of Chaotic Cellular Automata
,”
Theor. Comput. Sci.
,
217
(
1
), pp.
31
51
.10.1016/S0304-3975(98)00149-2
6.
Lv
,
Y.
, and
Sun
,
J.
,
2006
, “
Dynamical Behavior for Stochastic Lattice Systems
,”
Chaos, Solitons Fractals
,
27
(
4
), pp.
1080
1090
.10.1016/j.chaos.2005.04.089
7.
Huang
,
X.
,
Fan
,
Y.
,
Jia
,
J.
,
Wang
,
Z.
, and
Li
,
Y.
,
2017
, “
Quasi-Synchronisation of Fractional-Order Memristor-Based Neural Networks With Parameter Mismatches
,”
IET Control Theory Appl.
,
11
(
14
), pp.
2317
2327
.10.1049/iet-cta.2017.0196
8.
Wang
,
F.
, and
Yang
,
Y.
,
2018
, “
Quasi-Synchronization for Fractional-Order Delayed Dynamical Networks With Heterogeneous Nodes
,”
Appl. Math. Comput.
,
339
, pp.
1
14
.10.1016/j.amc.2018.07.041
9.
Ding
,
Z.
, and
Shen
,
Y.
,
2016
, “
Projective Synchronization of Nonidentical Fractional-Order Neural Networks Based on Sliding Mode Controller
,”
Neural Networks
,
76
, pp.
97
105
.10.1016/j.neunet.2016.01.006
10.
Magin
,
R.
,
Feng
,
X.
, and
Baleanu
,
D.
,
2009
, “
Solving the Fractional Order Bloch Equation
,”
Concepts Magn. Resonance Part A
,
34A
(
1
), pp.
16
23
.10.1002/cmr.a.20129
11.
Yang
,
C.
,
Li
,
W.
,
Yu
,
W.
,
Liu
,
M.
,
Zhang
,
Y.
,
Ma
,
G.
,
Lei
,
M.
, and
Liu
,
W.
,
2018
, “
Amplification, Reshaping, Fission and Annihilation of Optical Solitons in Dispersion-Decreasing Fiber
,”
Nonlinear Dyn.
,
92
(
2
), pp.
203
213
.10.1007/s11071-018-4049-9
12.
Wu
,
Y.-D.
,
2006
, “
New All-Optical Switch Based on the Spatial Soliton Repulsion
,”
Opt. Express
,
14
(
9
), pp.
4005
4012
.10.1364/OE.14.004005
13.
Biswas
,
A.
,
Triki
,
H.
,
Zhou
,
Q.
,
Moshokoa
,
S. P.
,
Ullah
,
M. Z.
, and
Belic
,
M.
,
2017
, “
Cubic–Quartic Optical Solitons in Kerr and Power Law Media
,”
Optik
,
144
, pp.
357
362
.10.1016/j.ijleo.2017.07.008
14.
Biswas
,
A.
,
Zhou
,
Q.
,
Moshokoa
,
S. P.
,
Triki
,
H.
,
Belic
,
M.
, and
Alqahtani
,
R. T.
,
2017
, “
Resonant 1-Soliton Solution in Anti-Cubic Nonlinear Medium With Perturbations
,”
Optik
,
145
, pp.
14
17
.10.1016/j.ijleo.2017.07.036
15.
Upfal
,
E.
,
1992
, “
An o (Log n) Deterministic Packet-Routing Scheme
,”
J. ACM (JACM)
,
39
(
1
), pp.
55
70
.10.1145/147508.147517
16.
YIldIrIm
,
Y.
,
2019
, “
Optical Solitons to Sasa-Satsuma Model With Modified Simple Equation Approach
,”
Optik
,
184
, pp.
271
276
.10.1016/j.ijleo.2019.03.020
17.
Agrawal
,
G. P.
,
2000
, “
Nonlinear Fiber Optics
,”
Nonlinear Science at the Dawn of the 21st Century
,
Springer
, New York, pp.
195
211
.
18.
Baleanu
,
D.
,
Osman
,
M. S.
,
Zubair
,
A.
,
Raza
,
N.
,
Arqub
,
O. A.
, and
Ma
,
W.-X.
,
2020
, “
Soliton Solutions of a Nonlinear Fractional Sasa–Satsuma Equation in Monomode Optical Fibers
,”
Appl. Math. Inf. Sci.
,
14
(
3
), pp.
1
10
.10.18576/amis/140302
19.
Khater
,
M. M.
,
Seadawy
,
A. R.
, and
Lu
,
D.
,
2018
, “
Dispersive Optical Soliton Solutions for Higher Order Nonlinear Sasa-Satsuma Equation in Mono Mode Fibers Via New Auxiliary Equation Method
,”
Superlatt. Microstruct.
,
113
, pp.
346
358
.10.1016/j.spmi.2017.11.011
20.
Mvogo
,
A.
,
Mouassom
,
L. F.
,
Nyam
,
F. E. A.
, and
Mbane
,
C. B.
,
2020
, “
Exact Solitary Waves for the 2d Sasa-Satsuma Equation
,”
Chaos, Solitons Fractals
,
133
, p.
109657
.10.1016/j.chaos.2020.109657
21.
Tian
,
S.-F.
,
2016
, “
The Mixed Coupled Nonlinear Schrödinger Equation on the Half-Line Via the Fokas Method
,”
Proc. R. Soc. A
,
472
(
2195
), p.
20160588
.10.1098/rspa.2016.0588
22.
Tariq
,
K. U.
, and
Seadawy
,
A. R.
,
2018
, “
Optical Soliton Solutions of Higher Order Nonlinear Schrödinger Equation in Monomode Fibers and Its Applications
,”
Optik
,
154
, pp.
785
798
.10.1016/j.ijleo.2017.10.063
23.
Seadawy
,
A. R.
,
2017
, “
Modulation Instability Analysis for the Generalized Derivative Higher Order Nonlinear Schrödinger Equation and Its the Bright and Dark Soliton Solutions
,”
J. Electromagn. Waves Appl.
,
31
(
14
), pp.
1353
1362
.10.1080/09205071.2017.1348262
24.
Kaup
,
D. J.
, and
Newell
,
A. C.
,
1978
, “
An Exact Solution for a Derivative Nonlinear Schrödinger Equation
,”
J. Math. Phys.
,
19
(
4
), pp.
798
801
.10.1063/1.523737
25.
Seadawy
,
A. R.
,
2017
, “
The Generalized Nonlinear Higher Order of Kdv Equations From the Higher Order Nonlinear Schrödinger Equation and Its Solutions
,”
Optik
,
139
, pp.
31
43
.10.1016/j.ijleo.2017.03.086
26.
Ablowitz
,
M. J.
, and
Musslimani
,
Z. H.
,
2016
, “
Inverse Scattering Transform for the Integrable Nonlocal Nonlinear Schrödinger Equation
,”
Nonlinearity
,
29
(
3
), pp.
915
946
.10.1088/0951-7715/29/3/915
27.
Sousa
,
J. V. D. C.
, and
de Oliveira
,
E. C.
,
2018
, “
A New Truncated m-Fractional Derivative Type Unifying Some Fractional Derivative Types With Classical Properties
,” Int. J. Anal. Appl., 16(1), pp.
83
96
.
28.
Jhangeer
,
A.
,
Hussain
,
A.
,
Tahir
,
S.
, and
Sharif
,
S.
,
2020
, “
Solitonic, Super Nonlinear, Periodic, Quasiperiodic, Chaotic Waves and Conservation Laws of Modified Zakharov-Kuznetsov Equation in Transmission Line
,”
Commun. Nonlinear Sci. Numer. Simul.
,
86
, p.
105254
.10.1016/j.cnsns.2020.105254
You do not currently have access to this content.