Abstract

The primary objective of this paper is to analyze the synchronization phenomena in a coupled friction-induced oscillator consisting of two cantilever beams with tip-masses subjected to base excitations. The coupling is achieved by connecting a linear spring between the tip-masses, which are in frictional contact with a rigid rotating disk. The Pearson time correlation coefficient is used to measure the strength and mode of synchronization between the oscillations of the coupled system. Periodicity of the motions is determined by evaluating the Poincaré map wherein the zero velocity crossing from positive to negative is considered as the Poincaré section. The fundamental frequency of the coupled motion and its harmonics are obtained from the Fast Fourier Transform (FFT) of the time responses. A bifurcation study is conducted to identify the periodicity of motion of both the uncoupled and coupled systems. The coupled system is found to be synchronized for the single-periodic, multiperiodic, and quasi-periodic motions, but not for chaotic motions. Multiple basins of attractions of initial conditions corresponding to different synchronization characteristics are observed. The coupled system shows a large dependence of the mass ratio detuning factor (MRDF) on the synchronization characteristics; in-phase synchronization is obtained for smaller MRDF, which eventually becomes out-of-phase for larger MRDF. A special study conducted confirms that the coupling can be used to control the amplitude as well as the stick-phase of motion in friction oscillators.

References

1.
Yang
,
S.
, and
Gibson
,
R. F.
,
1997
, “
Brake Vibration and Noise: Reviews, Comments, and Proposals
,”
Int. J. Mater. Prod. Technol.
,
12
(
4–6
), pp.
496
513
.10.1504/IJMPT.1997.036384
2.
Dunlap
,
K. B.
,
Riehle
,
M. A.
, and
Longhouse
,
R. E.
,
1999
, “
An Investigative Overview of Automotive Disc Brake Noise
,”
SAE Paper No. 724.
3.
Chen
,
F.
,
Quaglia
,
R. L.
, and
Tan
,
C. A.
,
2003
, “
On Automotive Disc Brake Squeal Part I: Mechanisms and Causes
,”
SAE Paper No. 724.
4.
Dessouki
,
O.
,
Drake
,
G.
,
Lowe
,
B.
, and
Chang
,
W. K.
,
2003
, “
Disc Brake Squeal: Diagnosis and Prevention
,”
SAE Paper No. 724.
5.
Qatu
,
M. S.
,
Abdelhamid
,
M. K.
,
Pang
,
J.
, and
Sheng
,
G.
,
2009
, “
Overview of Automotive Noise and Vibration
,”
Int. J. Veh. Noise Vib.
,
5
(
1/2
), pp.
1
35
.10.1504/IJVNV.2009.029187
6.
Ghazaly
,
N. M.
,
El-Sharkawy
,
M.
, and
Ahmed
,
I.
,
2013
, “
A Review of Automotive Brake Squeal Mechanisms
,”
J. Mech. Des. Vib.
,
1
(
1
), pp.
5
9
.10.12691/jmdv-1-1-2
7.
Balaji
,
V.
,
Lenin
,
N.
,
Anand
,
P.
,
Rajesh
,
D.
,
Bupesh Raja
,
V. K.
, and
Palanikumar
,
K.
,
2021
, “
Brake Squeal Analysis of Disc Brake
,”
Mater. Today Proc.
,
46
(
9
), pp.
3824
3827
.
8.
Kinkaid
,
N. M.
,
O'Reilly
,
O. M.
, and
Papadopoulos
,
P.
,
2003
, “
Automotive Disc Brake Squeal
,”
J. Sound Vib.
,
267
(
1
), pp.
105
166
.10.1016/S0022-460X(02)01573-0
9.
Nakae
,
T.
,
Ryu
,
T.
,
Sueoka
,
A.
,
Nakano
,
Y.
, and
Inoue
,
T.
,
2011
, “
Squeal and Chatter Phenomena Generated in a Mountain Bike Disc Brake
,”
J. Sound Vib.
,
330
(
10
), pp.
2138
2149
.10.1016/j.jsv.2010.08.027
10.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos Part I: Mechanics of Contact and Friction
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
209
226
.10.1115/1.3111079
11.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos Part II: Dynamics and Modeling
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
.10.1115/1.3111080
12.
Papinniemi
,
A.
,
Lai
,
J. C. S.
,
Zhao
,
J.
, and
Loader
,
L.
,
2002
, “
Brake Squeal: A Literature Review
,”
Appl. Acoust.
,
63
(
4
), pp.
391
400
.10.1016/S0003-682X(01)00043-3
13.
Hoffmann
,
N. P.
, and
Gaul
,
L.
,
2008
, “
Friction Induced Vibrations of Brakes: Research Fields and Activities
,”
SAE Paper No. 724.
14.
Rashid
,
A.
,
2014
, “
Overview of Disc Brakes and Related phenomena – A Review
,”
Int. J. Veh. Noise Vib.
,
10
(
4
), pp.
257
301
.10.1504/IJVNV.2014.065634
15.
Ouyang
,
H.
,
Nack
,
W.
,
Yuan
,
Y.
, and
Chen
,
F.
,
2005
, “
Numerical Analysis of Automotive Disc Brake Squeal: A Review
,”
Int. J. Veh. Noise Vib.
,
1
(
3/4
), pp.
207
231
.10.1504/IJVNV.2005.007524
16.
Leine
,
R. I.
,
Van Campen
,
D. H.
,
De Kraker
,
A.
, and
Van Den Steen
,
L.
,
1998
, “
Stick-Slip Vibrations Induced by Alternate Friction Models
,”
Nonlinear Dyn.
,
16
(
1
), pp.
41
54
.10.1023/A:1008289604683
17.
Hinrichs
,
N.
,
Oestreich
,
M.
, and
Popp
,
K.
,
1998
, “
On the Modelling of Friction Oscillators
,”
J. Sound Vib.
,
216
(
3
), pp.
435
459
.10.1006/jsvi.1998.1736
18.
Thomsen
,
J. J.
,
1999
, “
Using Fast Vibrations to Quench Friction-Induced Oscillations
,”
J. Sound Vib.
,
228
(
5
), pp.
1079
1102
.10.1006/jsvi.1999.2460
19.
Ko
,
P. L.
,
Taponat
,
M. C.
, and
Pfaifer
,
R.
,
2001
, “
Friction-Induced Vibration – With and Without External Disturbance
,”
Tribol. Int.
,
34
(
1
), pp.
7
24
.10.1016/S0301-679X(00)00122-5
20.
Popp
,
K.
, and
Rudolph
,
M.
,
2004
, “
Vibration Control to Avoid Stick-Slip Motion
,”
J. Vib. Control
,
10
(
11
), pp.
1585
1600
.10.1177/1077546304042026
21.
Hetzler
,
H.
,
Schwarzer
,
D.
, and
Seemann
,
W.
,
2007
, “
Analytical Investigation of Steady-State Stability and Hopf-Bifurcations Occurring in Sliding Friction Oscillators With Application to Low-Frequency Disc Brake Noise
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
1
), pp.
83
99
.10.1016/j.cnsns.2006.01.007
22.
Hoffmann
,
N.
,
Fischer
,
M.
,
Allgaier
,
R.
, and
Gaul
,
L.
,
2002
, “
A Minimal Model for Studying Properties of the Mode-Coupling Type Instability in Friction Induced Oscillations
,”
Mech. Res. Commun.
,
29
(
4
), pp.
197
205
.10.1016/S0093-6413(02)00254-9
23.
Hoffmann
,
N.
, and
Gaul
,
L.
,
2003
, “
Effects of Damping on Mode-Coupling Instability in Friction Induced Oscillations
,”
ZAMM Z. Angew. Math. Mech.
,
83
(
8
), pp.
524
534
.10.1002/zamm.200310022
24.
Kang
,
J.
,
Krousgrill
,
C. M.
, and
Sadeghi
,
F.
,
2008
, “
Dynamic Instability of a Thin Circular Plate With Friction Interface and Its Application to Disc Brake Squeal
,”
J. Sound Vib.
,
316
(
1–5
), pp.
164
179
.10.1016/j.jsv.2008.02.041
25.
Kang
,
J.
,
Krousgrill
,
C. M.
, and
Sadeghi
,
F.
,
2009
, “
Analytical Formulation of Mode-Coupling Instability in Disc-Pad Coupled System
,”
Int. J. Mech. Sci.
,
51
(
1
), pp.
52
63
.10.1016/j.ijmecsci.2008.11.002
26.
Hoffmann
,
N.
, and
Gaul
,
L.
,
2004
, “
A Sufficient Criterion for the Onset of Sprag-Slip Oscillations
,”
Arch. Appl. Mech.
,
73
(
9–10
), pp.
650
660
.10.1007/s00419-003-0315-4
27.
Keitzel
,
H.
, and
Hoffmann
,
N.
,
2006
, “
Influence of the Contact Model on the Onset of Sprag-Slip
,”
PAMM
,
6
(
1
), pp.
311
312
.10.1002/pamm.200610137
28.
Kang
,
J.
, and
Krousgrill
,
C. M.
,
2010
, “
The Onset of Friction-Induced Vibration and Spragging
,”
J. Sound Vib.
,
329
(
17
), pp.
3537
3549
.10.1016/j.jsv.2010.03.002
29.
Kang
,
J.
,
Krousgrill
,
C. M.
, and
Sadeghi
,
F.
,
2009
, “
Comprehensive Stability Analysis of Disc Brake Vibrations Including Gyroscopic, Negative Friction Slope and Mode-Coupling Mechanisms
,”
J. Sound Vib.
,
324
(
1–2
), pp.
387
407
.10.1016/j.jsv.2009.01.050
30.
Hashemi-Dehkordi
,
S. M.
,
Abu-Bakar
,
A. R.
, and
Mailah
,
M.
,
2014
, “
Stability Analysis of a Linear Friction-Induced Vibration Model and Its Prevention Using Active Force Control
,”
Adv. Mech. Eng.
,
6
, p.
251594
.
31.
Moirot
,
F.
, and
Nguyen
,
Q. S.
,
2000
, “
Brake Squeal: A Problem of Flutter Instability of the Steady Sliding Solution?
Arch. Mech
,
52
(
4–5
), pp.
645
661
.10.24423/aom.30
32.
Devarajan
,
K.
, and
Balaram
,
B.
,
2017
, “
Analytical Approximations for Stick-Slip Amplitudes and Frequency of Duffing Oscillator
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), pp.
1
8
.10.1115/1.4034734
33.
Awrejcewicz
,
J.
,
Fečkan
,
M.
, and
Olejnik
,
P.
,
2005
, “
On Continuous Approximation of Discontinuous Systems
,”
Nonlinear Anal. Theory Methods Appl.
,
62
(
7
), pp.
1317
1331
.10.1016/j.na.2005.04.033
34.
Awrejcewicz
,
J.
,
Dzyubak
,
L.
, and
Grebogi
,
C.
,
2005
, “
Estimation of Chaotic and Regular (Stick-Slip and Slip-Slip) Oscillations Exhibited by Coupled Oscillators With Dry Friction
,”
Nonlinear Dyn.
,
42
(
4
), pp.
383
394
.10.1007/s11071-005-7183-0
35.
Awrejcewicz
,
J.
, and
Dzyubak
,
L.
,
2003
, “
Stick-Slip Chaotic Oscillations in a Quasi-Autonomous Mechanical System
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
4
(
2
), pp.
155
160
.10.1515/IJNSNS.2003.4.2.155
36.
Awrejcewicz
,
J.
, and
Sendkowski
,
D.
,
2005
, “
Stick-Slip Chaos Detection in Coupled Oscillators With Friction
,”
Int. J. Solids Struct.
,
42
(
21–22
), pp.
5669
5682
.10.1016/j.ijsolstr.2005.03.018
37.
Pilipchuk
,
V.
,
Olejnik
,
P.
, and
Awrejcewicz
,
J.
,
2015
, “
Transient Friction-Induced Vibrations in a 2-DOF Model of Brakes
,”
J. Sound Vib.
,
344
, pp.
297
312
.10.1016/j.jsv.2015.01.028
38.
Galvanetto
,
U.
,
Bishop
,
S. R.
, and
Briseghella
,
L.
,
1995
, “
Mechanical Stick-Slip Vibrations
,”
Int. J. Bifurc. Chaos
,
05
(
03
), pp.
637
651
.10.1142/S0218127495000508
39.
Chatterjee
,
S.
,
2007
, “
Time-Delayed Feedback Control of Friction-Induced Instability
,”
Int. J. Nonlinear Mech
,
42
(
9
), pp.
1127
1143
.10.1016/j.ijnonlinmec.2007.08.002
40.
Saha
,
A.
,
Bhattacharya
,
B.
, and
Wahi
,
P.
,
2010
, “
A Comparative Study on the Control of Friction-Driven Oscillations by Time-Delayed Feedback
,”
Nonlinear Dyn.
,
60
(
1–2
), pp.
15
37
.10.1007/s11071-009-9577-x
41.
Saha
,
A.
, and
Wahi
,
P.
,
2011
, “
Delayed Feedback for Controlling the Nature of Bifurcations in Friction-Induced Vibrations
,”
J. Sound Vib.
,
330
(
25
), pp.
6070
6087
.10.1016/j.jsv.2011.07.032
42.
Abdo
,
J.
, and
Abouelsoud
,
A. A.
,
2011
, “
Analytical Approach to Estimate Amplitude of Stick-Slip Oscillations
,”
J. Theor. Appl. Mech.
,
49
(
4
), pp.
971
986
.http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BWM6-0010-0018
43.
Saha
,
A.
, and
Wahi
,
P.
,
2014
, “
An Analytical Study of Time-Delayed Control of Friction-Induced Vibrations in a System With a Dynamic Friction Model
,”
Int. J. Nonlinear Mech.
,
63
, pp.
60
70
.10.1016/j.ijnonlinmec.2014.03.012
44.
Shin
,
K.
,
Brennan
,
M. J.
,
Oh
,
J. E.
, and
Harris
,
C. J.
,
2002
, “
Analysis of Disc Brake Noise Using a Two-Degree-of-Freedom Model
,”
J. Sound Vib.
,
254
(
5
), pp.
837
848
.10.1006/jsvi.2001.4127
45.
Popp
,
K.
, and
Stelter
,
P.
,
1990
, “
Stick-Slip Vibrations and Chaos
,”
Philos. Trans. R. Soc. London. Ser. A Phys. Eng. Sci.
,
332
(
1624
), pp.
89
105
.10.1098/rsta.1990.0102
46.
Stelter
,
P.
,
1992
, “
Nonlinear Vibrations of Structures Induced by Dry Friction
,”
Nonlinear Dyn.
,
3
(
5
), pp.
329
345
.10.1007/BF00045070
47.
Ouyang
,
H.
,
Mottershead
,
J. E.
,
Cartmell
,
M. P.
, and
Friswell
,
M. I.
,
1998
, “
Friction-Induced Parametric Resonances in Discs: Effect of a Negative Friction–Velocity Relationship
,”
J. Sound Vib.
,
209
(
2
), pp.
251
264
.10.1006/jsvi.1997.1261
48.
Ouyang
,
H.
,
Mottershead
,
J. E.
,
Cartmell
,
M. P.
, and
Brookfield
,
D. J.
,
1999
, “
Friction-Induced Vibration of an Elastic Slider on a Vibrating Disc
,”
Int. J. Mech. Sci.
,
41
(
3
), pp.
325
336
.10.1016/S0020-7403(98)00059-9
49.
Saha
,
A.
,
Pandey
,
S. S.
,
Bhattacharya
,
B.
, and
Wahi
,
P.
,
2012
, “
Analysis and Control of Friction-Induced Oscillations in a Continuous System Analysis and Control of Friction-Induced Oscillations in a Continuous System
,”
J. Vib. Control
,
18
(
3
), pp.
467
480
.10.1177/1077546311403792
50.
Marszal
,
M.
,
Saha
,
A.
,
Jankowski
,
K.
, and
Stefański
,
A.
,
2016
, “
Synchronization in Arrays of Coupled Self-Induced Friction Oscillators
,”
Eur. Phys. J. Spec. Top.
,
225
(
13–14
), pp.
2669
2678
.10.1140/epjst/e2016-60007-1
51.
Papangelo
,
A.
,
Hoffmann
,
N.
,
Grolet
,
A.
,
Stender
,
M.
, and
Ciavarella
,
M.
,
2018
, “
Multiple Spatially Localized Dynamical States in Friction-Excited Oscillator Chains
,”
J. Sound Vib.
,
417
, pp.
56
64
.10.1016/j.jsv.2017.11.056
52.
Wang
,
X. C.
,
Huang
,
B.
,
Wang
,
R. L.
,
Mo
,
J. L.
, and
Ouyang
,
H.
,
2020
, “
Friction-Induced Stick-Slip Vibration and Its Experimental Validation
,”
Mech. Syst. Signal Process
,
142
, p.
106705
.10.1016/j.ymssp.2020.106705
53.
Galvanetto
,
U.
,
2001
, “
Some Discontinuous Bifurcations in a Two-Block Stick-Slip System
,”
J. Sound Vib.
,
248
(
4
), pp.
653
669
.10.1006/jsvi.2001.3809
54.
Kelly
,
S. G.
,
2000
,
Fundamentals of Mechanical Vibrations
, 2nd ed.,
McGraw-Hill Higher Education
,
New York
.
55.
Sorokin
,
V. S.
,
Juel
,
J.
, and
Brøns
,
M.
,
2021
, “
Coupled Longitudinal and Transverse Vibrations of Tensioned Euler-Bernoulli Beams With General Linear Boundary Conditions
,”
Mech. Syst. Signal Process
,
150
, p.
107244
.10.1016/j.ymssp.2020.107244
56.
Barrón
,
M. A.
, and
Sen
,
M.
,
2009
, “
Synchronization of Coupled Self-Excited Elastic Beams
,”
J. Sound Vib.
,
324
(
1–2
), pp.
209
220
.10.1016/j.jsv.2009.02.007
57.
Balanov
,
A.
,
Janson
,
N.
,
Postnov
,
D.
, and
Sosnovtseva
,
O.
,
2008
,
Synchronization
,
Springer
Series in Synergetics, Springer, Berlin.
You do not currently have access to this content.