Abstract

Fractional partial differential equations are useful tools to describe transportation, anomalous, and non-Brownian diffusion. In the present paper, we propose the Daftardar-Gejji and Jafari method along with its error analysis for solving systems of nonlinear time–space fractional partial differential equations (PDEs). Moreover, we solve a variety of nontrivial time–space fractional systems of PDEs. The obtained solutions either occur in exact form or in the form of a series, which converges to a closed form. The proposed method is free from linearization and discretization and does not include any tedious calculations. Moreover, it is easily employable using the computer algebra system such as Mathematica, Maple, etc.

References

1.
Choudhary
,
S.
, and
Daftardar-Gejji
,
V.
,
2017
, “
Invariant Subspace Method: A Tool for Solving Fractional Partial Differential Equations
,”
Fractional Calculus Appl. Anal.
,
20
(
2
), pp.
477
493
.10.1515/fca-2017-0024
2.
Momani
,
S.
, and
Odibat
,
Z.
,
2006
, “
Analytical Approach to Linear Fractional Partial Differential Equations Arising in Fluid Mechanics
,”
Phys. Lett. A
,
355
(
4–5
), pp.
271
279
.10.1016/j.physleta.2006.02.048
3.
Guo
,
B.
,
Pu
,
X.
, and
Huang
,
F.
,
2015
,
Fractional Partial Differential Equations and Their Numerical Solutions
,
World Scientific
, Singapore.
4.
Li
,
C.
, and
Chen
,
A.
,
2018
, “
Numerical Methods for Fractional Partial Differential Equations
,”
Int. J. Comput. Math.
,
95
(
6–7
), pp.
1048
1099
.10.1080/00207160.2017.1343941
5.
Zhang
,
Y.
,
2009
, “
A Finite Difference Method for Fractional Partial Differential Equation
,”
Appl. Math. Comput.
,
215
(
2
), pp.
524
529
.10.1016/j.amc.2009.05.018
6.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
, 198,
Academic Press
, New York.
7.
Jafari
,
H.
,
2021
, “
A New General Integral Transform for Solving Integral Equations
,”
J. Adv. Res.
,
32
, pp.
133
138
.10.1016/j.jare.2020.08.016
8.
Adomian
,
G.
,
1994
,
Solving Frontier Problems of Physics: The Decomposition Method
,
Kluwer
,
Boston, MA
.
9.
He
,
J.-H.
,
1999
, “
Homotopy Perturbation Technique
,”
Comput. Methods Appl. Mech. Eng.
,
178
(
3–4
), pp.
257
262
.10.1016/S0045-7825(99)00018-3
10.
He
,
J.-H.
,
1999
, “
Variational Iteration Method–a Kind of Non-Linear Analytical Technique: Some Examples
,”
Int. J. Non-Linear Mech.
,
34
(
4
), pp.
699
708
.10.1016/S0020-7462(98)00048-1
11.
Jafari
,
H.
,
Nazari
,
M.
,
Baleanu
,
D.
, and
Khalique
,
C.
,
2013
, “
A New Approach for Solving a System of Fractional Partial Differential Equations
,”
Comput. Math. Appl.
,
66
(
5
), pp.
838
843
.10.1016/j.camwa.2012.11.014
12.
Singh
,
J.
, and
Devendra
,
S.
,
2011
, “
Homotopy Perturbation Sumudu Transform Method for Nonlinear Equations
,”
Adv. Theor. Appl. Mech.
,
4
(
4
), pp.
165
175
.http://m-hikari.com/atam/atam2011/atam1-4-2011/singhjagdevATAM1-4-2011.pdf
13.
Kumar
,
D.
,
Singh
,
J.
, and
Rathore
,
S.
,
2012
, “
Sumudu Decomposition Method for Nonlinear Equations
,” Int. Math. Forum,
7
, pp.
515
521
.
14.
Wang
,
K.
, and
Liu
,
S.
,
2016
, “
A New Sumudu Transform Iterative Method for Time-Fractional Cauchy Reaction–Diffusion Equation
,”
SpringerPlus
,
5
(
1
), p.
865
.10.1186/s40064-016-2426-8
15.
Kumar
,
M.
, and
Daftardar-Gejji
,
V.
,
2019
, “
Exact Solutions of Fractional Partial Differential Equations by Sumudu Transform Iterative Method
,”
Fractional Calculus and Fractional Differential Equations
,
Springer
, Singapore, pp.
157
180
.
16.
Choudhary
,
S.
,
Prakash
,
P.
, and
Daftardar-Gejji
,
V.
,
2019
, “
Invariant Subspaces and Exact Solutions for a System of Fractional PDEs in Higher Dimensions
,”
Comput. Appl. Math.
,
38
(
3
), pp.
1
26
.10.1007/s40314-019-0879-4
17.
Choudhary
,
S.
, and
Daftardar-Gejji
,
V.
,
2019
, “
Solving Systems of Multi-Term Fractional PDEs: Invariant Subspace Approach
,”
Int. J. Model., Simul., Sci. Comput.
,
10
(
1
), p.
1941010
.10.1142/S1793962319410101
18.
Sahadevan
,
R.
, and
Prakash
,
P.
,
2017
, “
Exact Solutions and Maximal Dimension of Invariant Subspaces of Time Fractional Coupled Nonlinear Partial Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
42
, pp.
158
177
.10.1016/j.cnsns.2016.05.017
19.
Touchent
,
K. A.
,
Hammouch
,
Z.
, and
Mekkaoui
,
T.
,
2020
, “
A Modified Invariant Subspace Method for Solving Partial Differential Equations With Non-Singular Kernel Fractional Derivatives
,”
Appl. Math. Nonlinear Sci.
,
5
(
2
), pp.
35
48
.10.2478/amns.2020.2.00012
20.
Prakash
,
P.
,
Priyendhu
,
K.
, and
Lakshmanan
,
M.
,
2022
, “
Invariant Subspace Method for (m+1)-Dimensional Non-Linear Time-Fractional Partial Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
111
, p.
106436
.10.1016/j.cnsns.2022.106436
21.
Daftardar-Gejji
,
V.
, and
Jafari
,
H.
,
2006
, “
An Iterative Method for Solving Nonlinear Functional Equations
,”
J. Math. Anal. Appl.
,
316
(
2
), pp.
753
763
.10.1016/j.jmaa.2005.05.009
22.
Daftardar-Gejji
,
V.
, and
Kumar
,
M.
,
2018
, “
New Iterative Method: A Review
,”
Front. Fractional Calculus
, 1, Bentham Science Publishers, UAE, pp.
233
268
.
23.
Kumar
,
M.
, and
Daftardar-Gejji
,
V.
,
2019
, “
A New Family of Predictor-Corrector Methods for Solving Fractional Differential Equations
,”
Appl. Math. Comput.
,
363
, p.
124633
.10.1016/j.amc.2019.124633
24.
Jhinga
,
A.
, and
Daftardar-Gejji
,
V.
,
2018
, “
A New Finite Difference Predictor-Corrector Method for Fractional Differential Equations
,”
Appl. Math. Comput.
,
336
, pp.
418
432
.10.1016/j.amc.2018.05.003
25.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
,
Yverdon
.
26.
Bonilla
,
B.
,
Rivero
,
M.
,
Rodríguez-Germá
,
L.
, and
Trujillo
,
J. J.
,
2007
, “
Fractional Differential Equations as Alternative Models to Nonlinear Differential Equations
,”
Appl. Math. Comput.
,
187
(
1
), pp.
79
88
.10.1016/j.amc.2006.08.105
27.
Joshi
,
M. C.
, and
Bose
,
R. K.
,
1985
,
Some Topics in Nonlinear Functional Analysis
,
Wiley
, New York.
28.
Bhalekar
,
S.
, and
Daftardar-Gejji
,
V.
,
2011
, “
Convergence of the New Iterative Method
,”
Int. J. Differ. Equations
,
2011
, pp.
1
10
.10.1155/2011/989065
You do not currently have access to this content.