Abstract

Two different cases are encountered in the thermal analysis of solids. In the first case, continua are not subject to boundary and motion constraints and all material points experience same displacement-gradient changes as the result of application of thermal loads. In this case, referred to as unconstrained thermal expansion, the thermal load produces uniform stress-free motion within the continuum. In the second case, point displacements due to boundary and motion constraints are restricted, and therefore, continuum points do not move freely when thermal loads are applied. This second case, referred to as constrained thermal expansion, leads to thermal stresses and its study requires proper identification of the independent coordinates which represent expansion degrees-of-freedom. To have objective evaluation and comparison between the two cases of constrained and unconstrained thermal expansion, the reference-configuration geometry is accurately described using the absolute nodal coordinate formulation (ANCF) finite elements. ANCF position-gradient vectors have unique geometric meanings as tangent to coordinate lines, allowing systematic description of the two different cases of unconstrained and constrained thermal expansions using multiplicative decomposition of the matrix of position-gradient vectors. Furthermore, generality of the approach for large-displacement thermal analysis requires using the Lagrange–D'Alembert principle for proper treatment of algebraic constraint equations. Numerical results are presented to compare two different expansion cases, demonstrate use of the new approach, and verify its results by comparing with conventional finite element (FE) approaches.

References

1.
Perelman
,
T. L.
,
1961
, “
On Conjugated Problems of Heat Transfer
,”
Int. J. Heat Mass Transfer
,
3
(
4
), pp.
293
303
.10.1016/0017-9310(61)90044-8
2.
Helselhaus
,
A.
,
Vogel
,
T.
, and
Krain
,
H.
,
1992
, “
Coupling of 3D-Navier–Stokes External Flow Calculations and Internal 3D-Heat Conduction Calculations for Cooled Turbine Blades
,”
Proceedings of the AGARD Meeting on Heat Transfer and Cooling in Gas Turbines
, Köln-Porz, AGARD-CP-527, pp.
40
1
40-9
.
3.
Chang
,
C.
,
Nguyen
,
Q. D.
, and
Rønningsen
,
H. P.
,
1999
, “
Isothermal Start-Up of Pipeline Transporting Waxy Crude Oil
,”
J. Non-Newtonian Fluid Mech.
,
87
(
2–3
), pp.
127
154
.10.1016/S0377-0257(99)00059-2
4.
API Manual of Petroleum Measurement Standards (MPMS)
,
2004
, “
Chapter 11.1–20041/Adjunct to ASTM D1250-042/Adjunct to IP 200/04
,” Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils/Addendum 1–2007.
5.
Roe
,
B.
,
Haselbacher
,
A.
, and
Geubelle
,
P. H.
,
2007
, “
Stability of Fluid-Structure Thermal Simulations on Moving Grids
,”
Int. J. Numer. Methods Fluids
,
54
(
9
), pp.
1097
1117
.10.1002/fld.1416
6.
Roe
,
B.
,
Jaiman
,
R.
,
Haselbacher
,
A.
, and
Geubelle
,
P. H.
,
2008
, “
Combined Interface Boundary Method for Coupled Thermal Simulations
,”
Int. J. Numer. Methods Fluids
,
57
(
3
), pp.
329
354
.10.1002/fld.1637
7.
Henshaw
,
W. D.
, and
Chand
,
K. K.
,
2009
, “
A Composite Grid Solver for Conjugate Heat Transfer in Fluid-Structure Systems
,”
J. Comput. Phys.
,
228
(
10
), pp.
3708
3741
.10.1016/j.jcp.2009.02.007
8.
Dorfman
,
A.
, and
Renner
,
Z.
,
2009
, “
Conjugate Problems in Convective Heat Transfer: Review
,”
Math. Probl. Eng.
,
2009
, pp.
1
27
.10.1155/2009/927350
9.
Errera
,
M.-P.
, and
Chemin
,
S.
,
2013
, “
Optimal Solutions of Numerical Interface Conditions in Fluid–Structure Thermal Analysis
,”
J. Comput. Phys.
,
245
, pp.
431
455
.10.1016/j.jcp.2013.03.004
10.
Ojas
,
J.
, and
Penelope
,
L.
,
2014
, “
Stability Analysis of a Partitioned Fluid-Structure Thermal Coupling Algorithm
,”
J. Thermophys. Heat Transfer
,
28
(
1
), pp.
59
67
.10.2514/6.2012-3185
11.
Cui
,
Y.
,
Yu
,
Z.
, and
Lan
,
P.
,
2019
, “
A Novel Method of Thermo-Mechanical Coupled Analysis Based on the Unified Description
,”
Mechanism Mach. Theory
,
134
, pp.
376
392
.10.1016/j.mechmachtheory.2019.01.001
12.
Cook
,
R. D.
,
1981
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
13.
Goetz
,
A.
,
1970
,
Introduction to Differential Geometry
,
Addison Wesley
, Boston, MA.
14.
Kreyszig
,
E.
,
1991
,
Differential Geometry
,
Dover Publications
, New York.
15.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
, 2nd ed.,
Springer
,
Berlin
.
16.
Rogers
,
D. F.
,
2001
,
An Introduction to NURBS With Historical Perspective
,
Academic Press
,
San Diego, CA
.
17.
Farin
,
G.
,
2002
,
Curves and Surfaces for CAGD (A Practical Guide)
, 5th ed.,
Morgan Kaufmann, Publishers
,
San Francisco
.
18.
Gallier
,
J.
,
2011
,
Geometric Methods and Applications: For Computer Science and Engineering
,
Springer
,
New York
.
19.
Shabana
,
A. A.
,
2019
, “
Integration of Computer-Aided Design and Analysis (I-CAD-A): Application to Multibody Vehicle Systems
,”
Int. J. Veh. Performance
,
5
(
3
), pp.
300
327
.10.1504/IJVP.2019.100707
20.
Lubarda
,
V. A.
,
2004
, “
Constitutive Theories Based on the Multiplicative Decomposition of Deformation Gradient: Thermoelasticity, Elastoplasticity, and Biomechanics
,”
ASME Appl. Mech. Rev.
,
57
(
2
), pp.
95
108
.10.1115/1.1591000
21.
Vujosevic
,
L.
, and
Lubarda
,
V. A.
,
2002
, “
Finite-Strain Thermoelasticity Based on Multiplicative Decomposition of Deformation Gradient
,”
Theor. Appl. Mech.
,
28–29
(
28–29
), pp.
379
399
.10.2298/TAM0229379V
22.
Darijani
,
H.
, and
Naghdabadi
,
R.
,
2013
, “
Kinematics and Kinetics Modeling of Thermoelastic Continua Based on the Multiplicative Decomposition of the Deformation Gradient
,”
Int. J. Eng. Sci.
,
73
, pp.
77
69
.10.1016/j.ijengsci.2013.09.002
23.
Shabana
,
A. A.
,
2015
, “
Definition of ANCF Finite Elements
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p. 054506.10.1115/1.4030369
24.
Chen
,
Y.
,
Zhang
,
D. G.
, and
Li
,
L.
,
2019
, “
Dynamic Analysis of Rotating Curved Beams by Using Absolute Nodal Coordinate Formulation Based on Radial Point Interpolation Method
,”
J. Sound Vib.
,
441
, pp.
63
83
.10.1016/j.jsv.2018.10.011
25.
Tian
,
Q.
,
Chen
,
L. P.
,
Zhang
,
Y. Q.
, and
Yang
,
J. Z.
,
2009
, “
An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021009
.10.1115/1.3079783
26.
Orzechowski
,
G.
,
2012
, “
Analysis of Beam Elements of Circular Cross Section Using the Absolute Nodal Coordinate Formulation
,”
Archive Mech. Eng.
,
59
(
3
), pp.
283
296
.10.2478/v10180-012-0014-1
27.
Orzechowski
,
G.
, and
Frączek
,
J.
,
2012
, “
Integration of the Equations of Motion of Multibody Systems Using Absolute Nodal Coordinate Formulation
,”
Acta Mech. Automatica
,
6
(
2
), pp.
75
83
. https://www.researchgate.net/publication/268060752_Integration_of_the_equations_of_motion_of_multibody_systems_using_absolute_nodal_coordinate_formulation
28.
Orzechowski
,
G.
, and
Frączek
,
J.
,
2023
, “
Nearly Incompressible Nonlinear Material Models in the Large Deformation Analysis of Beams Using ANCF
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
451
464
.10.1007/s11071-015-2167-1
29.
Khan, I. M., and Anderson, K. S., 2013, “Divide-and-Conquer-Based Large Deformation Formulations for Multi-Flexible Body Systems”,
ASME
Paper No. DETC2013-12218. 10.1115/DETC2013-12218
30.
Kłodowski
,
A.
,
Rantalainen
,
T.
,
Mikkola
,
A.
,
Heinonen
,
A.
, and
Sievänen
,
H.
,
2011
, “
Flexible Multibody Approach in Forward Dynamic Simulation of Locomotive Strains in Human Skeleton With Flexible Lower Body Bones
,”
Multibody Syst. Dyn.
,
25
(
4
), pp.
395
409
.10.1007/s11044-010-9240-9
31.
Nachbagauer
,
K.
,
Pechstein
,
A. S.
,
Irschik
,
H.
, and
Gerstmayr
,
J.
,
2011
, “
A New Locking-Free Formulation for Planar, Shear Deformable, Linear and Quadratic Beam Finite Elements Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
245
263
.10.1007/s11044-011-9249-8
32.
Nachbagauer
,
K.
,
2013
, “
Development of Shear and Cross Section Deformable Beam Finite Elements Applied to Large Deformation and Dynamics Problems
,” Ph.D. dissertation,
Johannes Kepler University
,
Linz, Austria
.
33.
Nachbagauer
,
K.
,
2014
, “
State of the Art of ANCF Elements Regarding Geometric Description, Interpolation Strategies, Definition of Elastic Forces, Validation and Locking Phenomenon in Comparison With Proposed Beam Finite Elements
,”
Arch. Comput. Methods Eng.
,
21
(
3
), pp.
293
319
.10.1007/s11831-014-9117-9
34.
Olshevskiy
,
A.
,
Dmitrochenko
,
O.
, and
Kim
,
C. W.
,
2014
, “
Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021001
.10.1115/1.4024910
35.
Laflin
,
J. J.
,
Anderson
,
K. S.
,
Khan
,
I. M.
, and
Poursina
,
M.
,
2014
, “
New and Extended Applications of the Divide-and-Conquer Algorithm for Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041004
.10.1115/1.4027869
36.
Ren, H., Fan, W., 2023, An Adaptive Triangular Element of Absolute Nodal Coordinate Formulation for Thin Plates and Membranes,
Thin-Walled Structures
, 182, p. 110257.10.1016/j.tws.2022.110257
37.
Yoo
,
W.-S.
,
Lee
,
J.-H.
,
Park
,
S.-J.
,
Sohn
,
J.-H.
,
Pogorelov
,
D.
, and
Dmitrochenko
,
O.
,
2004
, “
Large Deflection Analysis of a Thin Plate: Computer Simulation and Experiment
,”
Multibody Syst. Dyn.
,
11
(
2
), pp.
185
208
.10.1023/B:MUBO.0000025415.73019.bb
38.
Takahashi
,
Y.
,
Shimizu
,
N.
, and
Suzuki
,
K.
,
2005
, “
Study on the Frame Structure Modeling of the Beam Element Formulated by Absolute Coordinate Approach
,”
J. Mech. Sci. Technol.
,
19
(
S1
), pp.
283
291
.10.1007/BF02916146
39.
Lee
,
J. H.
, and
Park
,
T. W.
,
2012
, “
Dynamic Analysis Model for the Current Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation
,”
Trans. Korean Soc. Mech. Eng. A
,
36
(
3
), pp.
339
346
.10.3795/KSME-A.2012.36.3.339
40.
Shabana
,
A. A.
,
2018
,
Computational Continuum Mechanics
, 3rd ed.,
Cambridge University Press
,
Cambridge
.
41.
Fotland
,
G.
,
Haskins
,
C.
, and
Rølvåg
,
T.
,
2020
, “
Trade Study to Select Best Alternative for Cable and Pulley Simulation for Cranes on Offshore Vessels
,”
Syst. Eng.
,
23
(
2
), pp.
177
188
.10.1002/sys.21503
42.
Li, S., Wang, Y., Ma, X., Wang, S., 2019, “Modeling and Simulation of a Moving Yarn Segment: Based on the Absolute Nodal Coordinate Formulation,”
Math. Probl. Eng.
, 2019, p. 656780210.1155/2019/6567802.
43.
Yu
,
L.
,
Zhao
,
Z.
,
Tang
,
J.
, and
Ren
,
G.
,
2010
, “
Integration of Absolute Nodal Elements Into Multibody System
,”
Nonlinear Dyn.
,
62
(
4
), pp.
931
943
.10.1007/s11071-010-9775-6
44.
Yamano
,
A.
,
Shintani
,
A.
,
Ito
,
T.
,
Nakagawa
,
C.
, and
Ijima
,
H.
,
2020
, “
Influence of Boundary Conditions on a Flutter-Mill
,”
J. Sound Vib.
,
478
, p.
115359
.10.1016/j.jsv.2020.115359
45.
Hewlett
,
J.
,
2019
, “
Methods for Real-Time Simulation of Systems of Rigid and Flexible Bodies With Unilateral Contact and Friction
,” Ph.D. thesis,
Department of Mechanical Engineering, McGill University
.
46.
Hewlett
,
J.
,
Arbatani
,
S.
, and
Kovecses
,
J.
,
2020
, “
A Fast and Stable First-Order Method for Simulation of Flexible Beams and Cables
,”
Nonlinear Dyn.
,
99
(
2
), pp.
1211
1226
.10.1007/s11071-019-05347-1
47.
Shen
,
Z.
,
Liu
,
C.
, and
Li
,
H.
,
2020
, “
Viscoelastic Analysis of Bistable Composite Shells Via Absolute Nodal Coordinate Formulation
,”
Compos. Struct.
,
248
, p.
112537
.10.1016/j.compstruct.2020.112537
48.
Htun
,
T. Z.
,
Suzuki
,
H.
, and
Garcia-Vallejo
,
D.
,
2020
, “
Dynamic Modeling of a Radially Multilayered Tether Cable for a Remotely-Operated Underwater Vehicle (ROV) Based on the Absolute Nodal Coordinate Formulation (ANCF)
,”
Mechanism Mach. Theory
,
153
, p.
103961
.10.1016/j.mechmachtheory.2020.103961
49.
Zhang
,
W.
,
Zhu
,
W.
, and
Zhang
,
S.
,
2020
, “
Deployment Dynamics for a Flexible Solar Array Composed of Composite-Laminated Plates
,”
ASCE J. Aerosp. Eng.
,
33
(
6
), p.
04020071
.10.1061/(ASCE)AS.1943-5525.0001186
50.
Sheng
,
F.
,
Zhong
,
Z.
, and
Wang
,
K.
,
2020
, “
Theory and Model Implementation for Analyzing Line Structures Subject to Dynamic Motions of Large Deformation and Elongation Using the Absolute Nodal Coordinate Formulation (ANCF) Approach
,”
Nonlinear Dyn.
,
101
(
1
), pp.
333
359
.10.1007/s11071-020-05783-4
51.
Wang J, Wang T. 2020, “Buckling Analysis of Beam Structure with Absolute Nodal Coordinate Formulation,”
IMechE J. Mech. Eng. Sci.
, 235(9), pp. 1585–1592.10.1177/0954406220947117
52.
Yuan
,
T.
,
Liu
,
Z.
,
Zhou
,
Y.
, and
Liu
,
J.
,
2020
, “
Dynamic Modeling for Foldable Origami Space Membrane Structure With Contact-Impact During Deployment
,”
Multibody Syst. Dyn.
,
50
(
1
), pp.
1
24
.10.1007/s11044-020-09737-x
53.
Shabana
,
A. A.
, and
Ling
,
H.
,
2019
, “
Noncommutativity of Finite Rotations and Definitions of Curvature and Torsion
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
9
), p.
091005
.10.1115/1.4043726
54.
Shabana
,
A. A.
, and
Patel
,
M.
,
2018
, “
Coupling Between Shear and Bending in the Analysis of Beam Problems: Planar Case
,”
Sound Vib.
,
419
, pp.
510
525
.10.1016/j.jsv.2017.12.006
55.
Zienkiewicz
,
O. C.
,
1977
,
The Finite Element Method
, 3rd ed.,
McGraw-Hill
,
New York
.
56.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method, Vol. 2: Solid Mechanics
,
Butterworth-Heinemann
,
Oxford
.
57.
Shen
,
Z.
, and
Hu
,
G.
,
2013
, “
Thermally Induced Vibrations of Solar Panel and Their Coupling With Satellite
,”
Int. J. Appl. Mech.
,
05
(
03
), p.
1350031
.10.1142/S1758825113500312
58.
Shen
,
Z.
,
Tian
,
Q.
,
Liu
,
X.
, and
Hu
,
G.
,
2013
, “
Thermally Induced Vibrations of Flexible Beams Using Absolute Nodal Coordinate Formulation
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
386
393
.10.1016/j.ast.2013.04.009
59.
Abbas
,
L. K.
,
Rui
,
X.
, and
Marzocca
,
P.
,
2015
, “
Aerothermoelastic Analysis of Panel Flutter Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
33
(
2
), pp.
163
178
.10.1007/s11044-014-9410-2
60.
Li
,
Y.
,
Wang
,
C.
, and
Huang
,
W.
,
2019
, “
Rigid-Flexible-Thermal Analysis of Planar Composite Solar Array With Clearance Joint Considering Torsional Spring, Latch Mechanism and Attitude Controller
,”
Nonlinear Dyn.
,
96
(
3
), pp.
2031
2053
.10.1007/s11071-019-04903-z
61.
Čepon
,
G.
,
Starc
,
B.
,
Zupančič
,
B.
, and
Boltežar
,
M.
,
2017
, “
Coupled Thermo-Structural Analysis of a Bimetallic Strip Using the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
41
, pp.
391
402
.10.1007/s11044-017-9574-7
62.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
, New York.
63.
Bower
,
A. F.
,
2009
,
Applied Mechanics of Solids
, 1st ed.,
CRC Press
, Boca Raton, FL.
64.
Spencer
,
A. J. M.
,
1980
,
Continuum Mechanics
,
Longman
,
London, UK
.
65.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Dovers Publications
,
Mineola, NY
.
66.
Stojanovic
,
R.
,
Djuric
,
S.
, and
Vujosevic
,
L.
,
1964
, “
On Finite Thermal Deformations
,”
Archiwum Mechaniki Stosowanej
,
16
, pp.
103
108
.
67.
Stojanovic
,
R.
,
1969
, “
On the Stress Relation in Non-Linear Thermoelasticity
,”
Int. J. Non-Linear Mech.
,
4
, pp.
217
233
.10.1016/0020-7462(69)90002-X
68.
Naerlovic
,
N.
,
Veljkovic
,
Stojanovic
,
R.
, and
Vujosevic
,
L.
,
1969
, “
Application of the General Theory of Incompatible Deformations to Theormoelasticity (in Serbian)
,”
Tehnika
,
1
, pp.
9
12
.
69.
Eckart
,
C.
,
1948
, “
The Thermodynamics of Irreversible Processes. IV. The Theory of Elasticity and Anelasticity
,”
Phys. Rev.
,
73
(
4
), pp.
373
382
.10.1103/PhysRev.73.373
70.
Kroner
,
E.
,
1960
, “
Allgemeine Kontinuumstheorie Der Versetzungen Und Eigensspannungen
,”
Archive for Rational Mech. Anal.
,
4
, pp.
273
334
.
71.
Sedov
,
L.
,
1966
,
Foundations of the Non-Linear Mechanics of Continua
,
Pergamon Press
,
Oxford
.
72.
Stojanovic
,
R.
,
Vujosevic
,
L.
, and
Blagojevic
,
D.
,
1970
, “
Couple Stresses in Thermoelasticity
,”
Revue Roumaine Des Sci. Tech. - Série de Méc. Appliquée
,
15
, pp.
517
537
.
73.
Miehe
,
C.
,
1995
, “
Entropic Thermoelasticity at Finite Strains. Aspects of the Formulation and Numerical Implementation
,”
Comput. Methods Appl. Mech. Eng.
,
120
(
3–4
), pp.
243
269
.10.1016/0045-7825(94)00057-T
74.
Imam
,
A.
, and
Johnson
,
G. C.
,
1998
, “
Decomposition of Deformation Gradient in Thermoelasticity
,”
ASME J. Appl. Mech.
,
65
(
2
), pp.
362
366
.10.1115/1.2789063
75.
Longère
,
P.
,
Dragon
,
A.
,
Trumel
,
H.
, and
Deprince
,
X.
,
2005
, “
Adiabatic Shear Banding-Induced Degradation in a Thermo-Elastic/Viscoplastic Material Under Dynamic Loading
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
285
320
.10.1016/j.ijimpeng.2005.03.002
76.
Darijani
,
H.
,
2012
, “
Finite Deformation Thermoelasticity of Thick-Walled Cylindrical Vessels Based on the Multiplicative Decomposition of Deformation Gradient
,”
J. Therm. Stresses
,
35
(
12
), pp.
1143
1157
.10.1080/01495739.2012.720531
77.
Darijani
,
H.
, and
Kargarnovin
,
M. H.
,
2010
, “
Kinematics and Kinetics Description of Thermoelastic Finite Deformation From Multiplicative Decomposition of Deformation Gradient Viewpoint
,”
Mech. Res. Commun.
,
37
(
6
), pp.
515
519
.10.1016/j.mechrescom.2010.07.013
78.
Sadik
,
S.
, and
Yavari
,
A.
,
2017
, “
On the Origins of the Idea of the Multiplicative Decomposition of the Deformation Gradient
,”
Math. Mech. Solids
,
22
(
4
), pp.
771
772
.10.1177/1081286515612280
79.
Sauer
,
R. A.
,
Ghaffari
,
R.
, and
Gupta
,
A.
,
2019
, “
The Multiplicative Deformation Split for Shells With Application to Growth, Chemical Swelling, Thermoelasticity, Viscoelasticity and Elastoplasticity
,”
Int. J. Solids Struct.
,
174–175
, pp.
53
68
.10.1016/j.ijsolstr.2019.06.002
80.
Joulin
,
C.
,
Xiang
,
J. S.
, and
Latham
,
J. P.
,
2020
, “
A Novel Thermo-Mechanical Coupling Approach for Thermal Fracturing of Rocks in the Three-Dimensional FDEM
,”
Comput. Particle Mech.
,
7
(
5
), pp.
935
946
.10.1007/s40571-020-00319-4
81.
Patel
,
M.
, and
Shabana
,
A. A.
,
2018
, “
Locking Alleviation in the Large Displacement Analysis of Beam Elements: The Strain Split Method
,”
Acta Mech.
,
229
(
7
), pp.
2923
2946
.10.1007/s00707-018-2131-5
82.
Eldeeb
,
A. E.
,
Zhang
,
D.
, and
Shabana
,
A. A.
,
2022
, “
Cross-Section Deformation, Geometric Stiffening, and Locking: Verification of Beam-Vibration Solutions
,”
Nonlinear Dyn.
,
108
(
2
), pp.
1425
1445
.10.1007/s11071-021-07102-x
83.
Usmani
,
A. S.
,
Rotter
,
J. M.
,
Lamont
,
S.
,
Sanad
,
A. M.
, and
Gillie
,
M.
,
2001
, “
Fundamental Principles of Structural Behavior Under Thermal Effects
,”
Fire Saf. J.
,
36
(
8
), pp.
721
744
.10.1016/S0379-7112(01)00037-6
84.
Huang
,
Z.
, and
Tan
,
K.
,
2004
, “
Effects of External Bending Moments and Heating Schemes on the Responses of Thermally Restrained Steel Columns
,”
Eng. Struct.
,
26
(
6
), pp.
769
780
.10.1016/j.engstruct.2004.01.010
85.
Yin
,
Y. Z.
, and
Wang
,
Y. C.
,
2004
, “
A Numerical Study of Large Deflection Behaviour of Restrained Steel Beams at Elevated Temperatures
,”
J. Constructional Steel Res.
,
60
(
7
), pp.
1029
1047
.10.1016/j.jcsr.2003.09.005
86.
Heidarpour
,
A.
, and
Bradford
,
M. A.
,
2009
, “
Generic Nonlinear Modelling of Restrained Steel Beams at Elevated Temperatures
,”
Eng. Struct.
,
31
(
11
), pp.
2787
2796
.10.1016/j.engstruct.2009.07.006
87.
Dwaikat
,
M. M. S.
, and
Kodur
,
V. K. R.
,
2011
, “
A Performance Based Methodology for Fire Design of Restrained Steel Beams
,”
J. Constructional Steel Res.
,
67
(
3
), pp.
510
524
.10.1016/j.jcsr.2010.09.004
88.
Pournaghshband
,
A.
,
Afshan
,
S.
, and
Theofanous
,
M.
,
2019
, “
Elevated Temperature Performance of Restrained Stainless Steel Beams
,”
Structures
,
22
, pp.
278
290
.10.1016/j.istruc.2019.08.015
89.
Liu
,
J. Y.
, and
Lu
,
H.
,
2007
, “
Thermal Effect on the Deformation of a Flexible Beam With Large Kinematical Driven Overall Motion
,”
Eur. J. Mech.
,
26
(
1
), pp.
137
151
.10.1016/j.euromechsol.2006.04.001
90.
Wu
,
J.
,
Zhao
,
Z. H.
, and
Ren
,
G. X.
,
2012
, “
Dynamic Analysis of Space Structure Deployment With Transient Thermal Load
,”
Adv. Mater. Res.
,
479–481
, pp.
803
807
.10.4028/www.scientific.net/AMR.479-481.803
91.
Manolis
,
G. D.
, and
Beskos
,
D. E.
,
1980
, “
Thermally Induced Vibrations of Beam Structures
,”
Comput. Methods Appl. Mech. Eng.
,
21
(
3
), pp.
337
355
.10.1016/0045-7825(80)90101-2
92.
Seibert
,
A. G.
, and
Rice
,
J. S.
,
1973
, “
Coupled Thermally Induced Vibrations of Beams
,”
AIAA J.
,
11
(
7
), pp.
1033
1035
.10.2514/3.6866
93.
Biot
,
M. A.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
(
3
), pp.
240
253
.10.1063/1.1722351
94.
Eslami
,
M. R.
,
Hetnarski
,
R. B.
,
Ignaczak
,
J.
,
Noda
,
N.
,
Sumi
,
N.
, and
Tanigawa
,
Y.
,
2013
,
Theory of Elasticity and Thermal Stresses
,
Springer
,
New York
.
95.
Shabana
,
A. A.
,
1986
, “
Thermal Analysis of Viscoelastic Multibody Systems
,”
Mech. Mach. Theory
,
21
(
3
), pp.
231
242
.10.1016/0094-114X(86)90099-6
96.
Sanborn
,
G. G.
, and
Shabana
,
A. A.
,
2009
, “
On the Integration of Computer Aided Design and Analysis Using the Fnite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
22
(
2
), pp.
181
197
.10.1007/s11044-009-9157-3
97.
Patel
,
M.
,
Orzechowski
,
G.
,
Tian
,
Q.
, and
Shabana
,
A. A.
,
2016
, “
A New Multibody System Approach for Tire Modeling Using ANCF Finite Elements Proceedings of the Institution of Mechanical Engineers
,”
Part K: J. Multi-Body Dyn.
,
230
(
1
), pp.
69
84
.10.1177/1464419315574641
You do not currently have access to this content.