Abstract

Flexure joints are rapidly gaining ground in precision engineering because of their predictable behavior. However, their range of motion is limited due to a stress limitation and a loss of support stiffness in deformed configurations. The support stiffness can be significantly increased by using leafsprings of which the width and thickness vary over the length of the leafspring. This paper presents formulations for two beam elements with a varying cross section that can be used for the efficient modeling of these types of leafsprings. One of these beam-formulations includes the modeling of the warping due to torsion, which is shown to be essential for accurate modeling. The 90% accuracy in stiffness results and 80% accuracy in stress results, in comparison with results of finite element analyses, are sufficient for the evaluation of concept-designs. Optimizations show that the support stiffness of two typical flexure joints can be increased by a factor of up to 4.0 keeping the same range of motion, by allowing the cross section to vary over the length of the leafspring. In these two flexure joints, 98% of this improvement can already be obtained by only varying the thickness, and keeping a constant width.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Hao
,
G.
, and
Kong
,
X.
,
2012
, “
A Novel Large-Range XY Compliant Parallel Manipulator With Enhanced Out-of-Plane Stiffness
,”
ASME J. Mech. Des.
,
134
(
6
), p. 061009.10.1115/1.4006653
3.
Wan
,
S.
, and
Xu
,
Q.
,
2016
, “
Design and Analysis of a New Compliant XY Micropositioning Stage Based on Roberts Mechanism
,”
Mech. Mach. Theory
,
95
, pp.
125
139
.10.1016/j.mechmachtheory.2015.09.003
4.
Al-Jodah
,
A.
,
Shirinzadeh
,
B.
,
Ghafarian
,
M.
,
Das
,
T. K.
,
Tian
,
Y.
,
Zhang
,
D.
, and
Wang
,
F.
,
2020
, “
Development and Control of a Large Range XYΘ Micropositioning Stage
,”
Mechatronics
,
66
, p.
102343
.10.1016/j.mechatronics.2020.102343
5.
Naves
,
M.
,
Nijenhuis
,
M.
,
Seinhorst
,
B.
,
Hakvoort
,
W. B. J.
, and
Brouwer
,
D. M.
,
2021
, “
T-Flex: A Fully Flexure-Based Large Range of Motion Precision Hexapod
,”
Precis. Eng.
,
72
, pp.
912
928
.10.1016/j.precisioneng.2021.08.015
6.
Zelenika
,
S.
,
Munteanu
,
M. G.
, and
De Bona
,
F.
,
2009
, “
Optimized Flexural Hinge Shapes for Microsystems and High-Precision Applications
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1826
1839
.10.1016/j.mechmachtheory.2009.03.007
7.
Wadikhaye
,
S. P.
,
Yong
,
Y. K.
, and
Moheimani
,
S. O. R.
,
2013
, “
Nanopositioner Design Using Tapered Flexures: A Parametric Study
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, Wollongong, NSW, Australia, July
9
12
.10.1109/AIM.2013.6584201
8.
Dang
,
M. P.
,
Le
,
H. G.
,
Chau
,
N. L.
, and
Dao
,
T. P.
,
2021
, “
Optimization for a Flexure Hinge Using an Effective Hybrid Approach of Fuzzy Logic and Moth-Flame Optimization Algorithm
,”
Math. Probl. Eng.
,
2021
, pp.
1
18
.10.1155/2021/6690674
9.
Zhang
,
X.
, and
Zhu
,
B.
,
2018
,
Topology Optimization of Compliant Mechanisms
,
Springer
, Singapore.
10.
Liu
,
M.
,
Zhan
,
J.
, and
Zhang
,
X.
,
2020
, “
Topology Optimization of Distributed Flexure Hinges With Desired Performance
,”
Eng. Optim.
,
52
(
3
), pp.
405
425
.10.1080/0305215X.2019.1595612
11.
Gomez
,
J. F.
,
Booker
,
J. D.
, and
Mellor
,
P. H.
,
2015
, “
2D Shape Optimization of Leaf-Type Crossed Flexure Pivot Springs for Minimum Stress
,”
Precis. Eng.
,
42
, pp.
6
21
.10.1016/j.precisioneng.2015.03.003
12.
Tschiersky
,
M.
,
Hekman
,
E. E. G.
,
Brouwer
,
D. M.
, and
Herder
,
J. L.
,
2019
, “
Gravity Balancing Flexure Springs for an Assistive Elbow Orthosis
,”
IEEE Trans. Med. Rob. Bionics
,
1
(
3
), pp.
177
188
.10.1109/TMRB.2019.2930341
13.
Wiersma
,
D. H.
,
Boer
,
S. E.
,
Aarts
,
R. G. K. M.
, and
Brouwer
,
D. M.
,
2014
, “
Design and Performance Optimization of Large Stroke Spatial Flexures
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p. 011016.10.1115/1.4025669
14.
Naves
,
M.
,
Brouwer
,
D. M.
, and
Aarts
,
R. G. K. M.
,
2017
, “
Building Block-Based Spatial Topology Synthesis Method for Large-Stroke Flexure Hinges
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041006
.
15.
Jonker
,
J. B.
,
1988
,
A Finite Element Dynamic Analysis of Flexible Spatial Mechanisms and Manipulators
,
Delft University of Technology
, Delft, The Netherlands.
16.
Jonker
,
J. B.
,
1989
, “
A Finite Element Dynamic Analysis of Spatial Mechanisms With Flexible Links
,”
Comput. Methods Appl. Mech. Eng.
,
76
(
1
), pp.
17
40
.10.1016/0045-7825(89)90139-4
17.
Jonker
,
J. B.
, and
Meijaard
,
J. P.
,
2013
, “
A Geometrically Non-Linear Formulation of a Three-Dimensional Beam Element for Solving Large Deflection Multibody System Problems
,”
Int. J. Non-Linear Mech.
,
53
, pp.
63
74
.10.1016/j.ijnonlinmec.2013.01.012
18.
Nijenhuis
,
M.
,
Jonker
,
J. B.
, and
Brouwer
,
D. M.
,
2019
, “
Importance of Warping in Beams With Narrow Rectangular Cross-Sections: An Analytical, Numerical and Experimental Flexible Cross-Hinge Case Study
,”
Computational Methods in Applied Sciences Multibody Dynamics 2019, ECCOMAS 2019
,
A.
Kecskeméthy
and
F.
Geu Flores
, eds.,
Springer
,
Cham
, Switzerland, pp.
199
206
.
19.
Jonker
,
J. B.
,
2021
, “
Three-Dimensional Beam Element for Pre-and Post-Buckling Analysis of Thin-Walled Beams in Multibody Systems
,”
Multibody Syst. Dyn.
,
52
(
1
), pp.
59
93
.10.1007/s11044-021-09777-x
20.
Eisenberger
,
M.
, and
Reich
,
Y.
,
1989
, “
Static, Vibration and Stability Analysis of Non-Uniform Beams
,”
Comput. Struct.
,
31
(
4
), pp.
567
573
.10.1016/0045-7949(89)90333-7
21.
Lee
,
S. Y.
,
Ke
,
H. Y.
, and
Kuo
,
Y. H.
,
1990
, “
Exact Static Deflection of a Non-Uniform Bernoulli-Euler Beam With General Elastic End Restraints
,”
Comput. Struct.
,
36
(
1
), pp.
91
97
.10.1016/0045-7949(90)90178-5
22.
Friedman
,
Z.
, and
Kosmatka
,
J. B.
,
1993
, “
Exact Stiffness Matrix of a Nonuniform Beam - II. Bending of a Timoshenko Beam
,”
Comput. Struct.
,
49
(
3
), pp.
545
555
.10.1016/0045-7949(93)90056-J
23.
Romano
,
F.
,
1996
, “
Deflections of Timoshenko Beam With Varying Cross-Section
,”
Int. J. Mech. Sci.
,
38
(
8–9
), pp.
1017
1035
.10.1016/0020-7403(95)00092-5
24.
Attarnejad
,
R.
,
Shahba
,
A.
, and
Semnani
,
S. J.
,
2011
, “
Analysis of Non-Prismatic Timoshenko Beams Using Basic Displacement Functions
,”
Adv. Struct. Eng.
,
14
(
2
), pp.
319
332
.10.1260/1369-4332.14.2.319
25.
Cleghorn
,
W. L.
, and
Tabarrok
,
B.
,
1992
, “
Finite Element Formulation of a Tapered Timoshenko Beam for Free Lateral Vibration Analysis
,”
J. Sound Vib.
,
152
(
3
), pp.
461
470
.10.1016/0022-460X(92)90481-C
26.
Attarnejad
,
R.
,
Semnani
,
S. J.
, and
Shahba
,
A.
,
2010
, “
Basic Displacement Functions for Free Vibration Analysis of Non-Prismatic Timoshenko Beams
,”
Finite Elem. Anal. Des.
,
46
(
10
), pp.
916
929
.10.1016/j.finel.2010.06.005
27.
Rao
,
S. S.
, and
Gupta
,
R. S.
,
2001
, “
Finite Element Vibration Analysis of Rotating Timoshenko Beams
,”
J. Sound Vib.
,
242
(
1
), pp.
103
124
.10.1006/jsvi.2000.3362
28.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
.10.1115/1.4002005
29.
Boley
,
B. A.
,
1963
, “
On the Accuracy of the Bernoulli-Euler Theory for Beams of Variable Section
,”
ASME J. Appl. Mech.
,
30
(
3
), pp.
373
378
.10.1115/1.3636564
30.
Hodges
,
D.
,
Ho
,
J.
, and
Yu
,
W.
,
2008
, “
The Effect of Taper on Section Constants for in-Plane Deformation of an Isotropic Strip
,”
J. Mech. Mater. Struct.
,
3
(
3
), pp.
425
440
.10.2140/jomms.2008.3.425
31.
Auricchio
,
F.
,
Balduzzi
,
G.
, and
Lovadina
,
C.
,
2015
, “
The Dimensional Reduction Approach for 2D Non-Prismatic Beam Modelling: A Solution Based on Hellinger–Reissner Principle
,”
Int. J. Solids Struct.
,
63
, pp.
264
276
.10.1016/j.ijsolstr.2015.03.004
32.
Balduzzi
,
G.
,
Aminbaghai
,
M.
,
Sacco
,
E.
,
Füssl
,
J.
,
Eberhardsteiner
,
J.
, and
Auricchio
,
F.
,
2016
, “
Non-Prismatic Beams: A Simple and Effective Timoshenko-Like Model
,”
Int. J. Solids Struct.
,
90
, pp.
236
250
.10.1016/j.ijsolstr.2016.02.017
33.
Cowper
,
G. R.
,
1966
, “
The Shear Coefficient in Timoshenko's Beam Theory
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
335
340
.10.1115/1.3625046
34.
Trahair
,
N. S.
,
2017
,
Flexural-Torsional Buckling of Structures
,
CRC Press
, Boca Raton, FL.
35.
Attard
,
M. M.
, and
Lawther
,
R.
,
1989
, “
Effect of Secondary Warping on Lateral Buckling
,”
Eng. Struct.
,
11
(
2
), pp.
112
118
.10.1016/0141-0296(89)90020-5
36.
Vlasov
,
V. Z.
,
1961
,
Thin-Walled Elastic Beams
,
Israel Program for Scientific Translations
,
Jerusalem
.
37.
Wagner
,
H.
, and
Pretschner
,
W.
,
1936
,
Torsion and Buckling of Open Sections
,
National Advisory Commitee for Aeronautics
, Munchen/Berlin, Germany.
38.
Hodges
,
D. H.
,
2006
, Nonlinear Composite Beam Theory (Progress in Astronautics and Aeronautics), American Institute of Aeronautics and Astronautics, Reston, VA.
39.
Besseling
,
J. F.
,
1982
, “
Non-Linear Theory for Elastic Beams and Rods and Its Finite Element Representation
,”
Comput. Methods Appl. Mech. Eng.
,
31
(
2
), pp.
205
220
.10.1016/0045-7825(82)90025-1
40.
Jonker
,
J. B.
,
2017
, “
Implementation of Shear Deformable Thin-Walled Beam Element for Flexible Multibody Dynamics
,”
The Eighth ECCOMAS Thematic Conference on Multibody Dynamics
,
Prague, Czech Republic
, June
19
22
.
41.
Hansen
,
N.
,
2006
, “
The CMA Evolution Strategy: A Comparing Review
,”
Towards a New Evolutionary Computation
,
J. A.
Lozano
,
P.
Larrañaga
,
I.
Inza
and
E.
Bengoetxea
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
75
102
.
42.
Naves
,
M.
,
Aarts
,
R. G. K. M.
, and
Brouwer
,
D. M.
,
2019
, “
Large Stroke High Off-Axis Stiffness Three Degree of Freedom Spherical Flexure Joint
,”
Precis. Eng.
,
56
, pp.
422
431
.10.1016/j.precisioneng.2019.01.011
43.
Naves
,
M.
,
Aarts
,
R. G. K. M.
, and
Brouwer
,
D. M.
,
2018
, “
Efficient Collision Detection Method for Flexure Mechanisms Comprising Deflected Leafsprings
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061012
.10.1115/1.4041484
44.
Timoshenko
,
S.
,
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1951
,
Theory of Elasticity, by S. Timoshenko and JN Goodier
,
McGraw-Hill Book Company
, New York.
You do not currently have access to this content.