Abstract

The concept of fractional-order control (F-oC) is exploited in this paper to synchronize fractional-order dynamical systems. The addressed systems in this paper reflect the real physical phenomena characterized by the complicated relationship between supply and demand for energy resources in the Shanghai area. Thus, we provide the developed fractional energy resource attractor and the simulation results regarding synchronization under the proposed control law of the same fractional energy resource attractor. Note that most of the synchronization methods achieved excellent performance when dealing with complex continuous systems; however, no method addressed the synchronization problem of fractional-order energy resource systems based on the F-oC and modern optimization techniques, to the best of our knowledge. By designing the finite-time control theory, the finite-time full synchronization of two identical fractional-order energy resources demand-supply hyperchaotic systems (F-oERDSHSs) is investigated due to its performance. The advanced prediction-based fractional-order control law (Pb-FoCL) is established for finite-time synchronization of F-oERDSHSs. The design procedure becomes a multi-objective optimization problem of the knowledge base of the developed controller while satisfying the desired performance requirements. The Finite-Time Stability (F-TS) of the control-loop system is proved by using the finite-time Lyapunov stability theory. Furthermore, the Improved Artificial Hummingbird Algorithm (I-AHA) is used to find an optimal knowledge base of Pb-FoCL while achieving the design constraints. Simulation results are provided to verify the efficiency of the proposed control strategy.

References

1.
Ahmad
,
S.
,
Ullah
,
A.
,
Al-Mdallal
,
Q. M.
,
Khan
,
H.
,
Shah
,
K.
, and
Khan
,
A.
,
2020
, “
Fractional-Order Mathematical Modeling of COVID-19 Transmission
,”
Chaos Solit. Fractals
,
139
, p.
110256
.10.1016/j.chaos.2020.110256
2.
Kozioł
,
K.
,
Stanisławski
,
R.
, and
Bialic
,
G.
,
2020
, “
Fractional-Order SIR Epidemic Model for Transmission Prediction of COVID-19 Disease
,”
Appl. Sci.
,
10
(
23
), p.
8316
.10.3390/app10238316
3.
Aslam
,
M.
,
Farman
,
M.
,
Akgül
,
A.
, and
Su
,
M.
,
2021
, “
Modeling and Simulation of Fractional-Order COVID‐19 Model With Quarantined‐Isolated People
,”
Math. Methods Appl. Sci.
,
44
(
8
), pp.
6389
6405
.10.1002/mma.7191
4.
Singh
,
J.
,
Ganbari
,
B.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2021
, “
Analysis of Fractional Model of Guava for Biological Pest Control With Memory Effect
,”
J. Adv. Res.
,
32
, pp.
99
108
.10.1016/j.jare.2020.12.004
5.
Singh
,
J.
,
2020
, “
Analysis of Fractional Blood Alcohol Model With Composite Fractional Derivative
,”
Chaos Solit. Fractals
,
140
, p.
110127
.10.1016/j.chaos.2020.110127
6.
Sun
,
M.
,
Tian
,
L.
, and
Fu
,
Y.
,
2007
, “
An Energy Resources Demand–Supply System and Its Dynamical Analysis
,”
Chaos Solit. Fractals
,
32
(
1
), pp.
168
180
.10.1016/j.chaos.2005.10.085
7.
Sun
,
M.
,
Jia
,
Q.
, and
Tian
,
L.
,
2009
, “
A New Four-Dimensional Energy Resources System and Its Linear Feedback Control
,”
Chaos Solit. Fractals
,
39
(
1
), pp.
101
108
.10.1016/j.chaos.2007.01.125
8.
Xin
,
B.
,
Chen
,
T.
, and
Liu
,
Y.
,
2011
, “
Projective Synchronization of Chaotic Fractional-Order Energy Resources Demand–Supply Systems Via Linear Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
11
), pp.
4479
4486
.10.1016/j.cnsns.2011.01.021
9.
Aghababa
,
M. P.
,
2015
, “
Fractional Modeling and Control of a Complex Nonlinear Energy Supply–Demand System
,”
Complexity
,
20
(
6
), pp.
74
86
.10.1002/cplx.21533
10.
Bigdeli
,
N.
, and
Ziazi
,
H. A.
,
2017
, “
Design of Fractional Robust Adaptive Intelligent Controller for Uncertain Fractional-Order Chaotic Systems Based on Active Control Technique
,”
Nonlinear Dyn.
,
87
(
3
), pp.
1703
1719
.10.1007/s11071-016-3146-x
11.
Bigdeli
,
N.
, and
Ziazi
,
H. A.
,
2017
, “
Finite-Time Fractional-Order Adaptive Intelligent Backstepping Sliding Mode Control of Uncertain Fractional-Order Chaotic Systems
,”
J. Franklin Inst.
,
354
(
1
), pp.
160
183
.10.1016/j.jfranklin.2016.10.004
12.
Chen
,
D.
, and
Liu
,
W.
,
2016
, “
Chaotic Behavior and Its Control in a Fractional-Order Energy Demand–Supply System
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061010
.10.1115/1.4034048
13.
Soukkou
,
A.
,
Boukabou
,
A.
, and
Goutas
,
A.
,
2018
, “
Generalized Fractional-Order Time-Delayed Feedback Control and Synchronization Designs for a Class of Fractional-Order Chaotic Systems
,”
Int. J. Gen. Syst.
,
47
(
7
), pp.
679
713
.10.1080/03081079.2018.1512601
14.
Wang
,
M. G.
, and
Xu
,
H.
,
2012
, “
A Novel Four-Dimensional Energy-Saving and Emission-Reduction System and Its Linear Feedback Control
,”
J. Appl. Math.
,
2012
, pp.
1
14
.10.1155/2012/842716
15.
Huang
,
S.
,
Zhou
,
B.
,
Li
,
C.
,
Wu
,
Q.
,
Xia
,
S.
,
Wang
,
H.
, and
Yang
,
H.
,
2018
, “
Fractional-Order Modeling and Sliding Mode Control of Energy-Saving and Emission-Reduction Dynamic Evolution System
,”
Int. J. Electr. Power Energy Syst.
,
100
, pp.
400
410
.10.1016/j.ijepes.2018.02.045
16.
Chandran
,
R.
,
Prasad
,
V.
, and
Vincent
,
P.
,
2014
, “
Modeling of Fractional-Order Buck-Boost Converter
,”
Int. J. Eng. Adv. Technol.
,
3
(
3
), pp.
129
133
.https://www.ijeat.org/wpcontent/uploads/papers/v3i3/C2604023314.pdf
17.
Radwan
,
A. G.
,
Emira
,
A. A.
,
AbdelAty
,
A. M.
, and
Azar
,
A. T.
,
2018
, “
Modeling and Analysis of Fractional-Order DC-DC Converter
,”
ISA Trans.
,
82
, pp.
184
199
.10.1016/j.isatra.2017.06.024
18.
Chen
,
X.
,
Chen
,
Y.
,
Zhang
,
B.
, and
Qiu
,
D.
,
2017
, “
Modeling and Analysis Method for Fractional-Order DC-DC Converters
,”
IEEE Trans. Power Electr.
,
32
(
9
), pp.
7034
7044
.10.1109/TPEL.2016.2628783
19.
Movahhed
,
A. M.
,
Shandiz
,
H. T.
, and
Sani
,
S. K. H.
,
2016
, “
Comparison of Fractional-Order Modelling and Integer-Order Modelling of Fractional-Order Buck Converter in Continuous Condition Mode Operation
,”
Adv. Electr. Electron. Eng.
,
14
(
5
), pp.
531
542
.10.15598/aeee.v14i5.1635
20.
Mitkowski
,
W.
,
Długosz
,
M.
, and
Skruch
,
P.
,
2022
, “
Selected Engineering Applications of Fractional-Order Calculus
,”
Fractional Dynamical Systems: Methods, Algorithms and Applications. Studies in Systems, Decision and Control
, Vol.
402
,
P.
Kulczycki
,
J.
Korbicz
, and
J.
Kacprzyk
, ed.,
Springer
,
Cham, Switzerland
.
21.
Zhang
,
G.
,
Qian
,
P.
, and
Su
,
Z.
,
2019
, “
Evolution of Fractional-Order Chaotic Economic Systems Based on Non-Degenerate Equilibrium Points
,”
Chaos Solit. Fractals
,
128
, pp.
219
228
.10.1016/j.chaos.2019.08.008
22.
Huang
,
S.
, and
Wang
,
B.
,
2017
, “Stability and Stabilization of a Class of Fractional-Order Nonlinear Systems for 0 < α < 2,”
Nonlinear Dyn.
,
88
(
2
), pp.
973
984
.10.1007/s11071-016-3288-x
23.
Tavazoei
,
M. S.
,
2020
, “
Fractional-Order Chaotic Systems: History, Achievements, Applications, and Future Challenges
,”
Eur. Phys. J.
,
229
(
6–7
), pp.
887
904
.10.1140/epjst/e2020-900238-8
24.
Petráš
,
I.
,
2011
,
Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
,
Higher Education Press, Beijing and Springer-Verlag
,
Berlin Heidelberg
.
25.
Wang
,
C.-H.
, and
Chen
,
C.-Y.
,
2015
, “
Intelligent Chaos Synchronization of Fractional-Order Systems Via Mean-Based Slide Mode Controller
,”
Int. J. Fuzzy Syst.
,
17
(
2
), pp.
144
157
.10.1007/s40815-015-0030-7
26.
Aghababa
,
M. P.
,
2017
, “
Stabilization of a Class of Fractional-Order Chaotic Systems Using a Non-Smooth Control Methodology
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1357
1370
.10.1007/s11071-017-3520-3
27.
Soukkou
,
A.
,
Belhour
,
M. C.
, and
Leulmi
,
S.
,
2016
, “
Review, Design, Optimisation and Stability Analysis of Fractional-Order PID Controller
,”
Int. J. Intell. Syst. Appl.
,
8
(
7
), pp.
73
96
.10.5815/ijisa.2016.07.08
28.
Balootaki
,
M. A.
,
Rahmani
,
H.
,
Moeinkhah
,
H.
, and
Mohammadzadeh
,
A.
,
2020
, “
On the Synchronization and Stabilization of Fractional-Order Chaotic Systems: Recent Advances and Future Perspectives
,”
Phys. A
,
551
(
2
), p.
124203
.10.1016/j.physa.2020.124203
29.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2008
, “
Chaotic Attractors in Incommensurate Fractional-Order Systems
,”
Phys. D.
,
237
(
20
), pp.
2628
2637
.10.1016/j.physd.2008.03.037
30.
Zhang
,
X.
,
Zhang
,
X.
,
Li
,
D.
, and
Yang
,
D.
,
2019
, “
Adaptive Synchronization for a Class of Fractional-Order Time-Delay Uncertain Chaotic Systems Via Fuzzy Fractional-Order Neural Network
,”
Int. J. Control Autom. Syst.
,
17
(
5
), pp.
1209
1220
.10.1007/s12555-018-0342-0
31.
Soukkou
,
A.
,
Boukabou
,
A.
, and
Leulmi
,
S.
,
2016
, “
Prediction-Based Feedback Control and Synchronization Algorithm of Fractional-Order Chaotic Systems
,”
Nonlinear Dyn.
,
85
(
4
), pp.
2183
2206
.10.1007/s11071-016-2823-0
32.
Soukkou
,
A.
,
Boukabou
,
A.
, and
Leulmi
,
S.
,
2016
, “
Design and Optimization of Generalized Prediction-Based Control Scheme to Stabilize and Synchronize Fractional-Order Hyperchaotic Systems
,”
Optik
,
127
(
12
), pp.
5070
5077
.10.1016/j.ijleo.2016.02.044
33.
Prakash
,
P.
,
Singh
,
J. P.
, and
Roy
,
B. K.
,
2018
, “
Fractional-Order Memristor-Based Chaotic Jerk System With No Equilibrium Point and Its Fractional-Order Backstepping Control
,”
IFAC-Papers Line
,
51
(
1
), pp.
1
6
.10.1016/j.ifacol.2018.05.001
34.
Deepika
,
D.
,
Kaur
,
S.
, and
Narayan
,
S.
,
2018
, “
Uncertainty and Disturbance Estimator Based Robust Synchronization for a Class of Uncertain Fractional Chaotic System Via Fractional-Order Sliding Mode Control
,”
Chaos Solit. Fractals
,
115
, pp.
196
203
.10.1016/j.chaos.2018.07.028
35.
Trigeassou
,
J. C.
, and
Maamri
,
N.
,
2019
,
Analysis, Modeling and Stability of Fractional-Order Differential Systems 1: The Infinite State Approach
,
Wiley and Sons
: Englewood Cliffs, NJ.
36.
Mani
,
A. K.
, and
Narayanan
,
M. D.
,
2020
, “
Analytical and Numerical Solution of an n-Term Fractional Nonlinear Dynamic Oscillator
,”
Nonlinear Dyn.
,
100
(
2
), pp.
999
1012
.10.1007/s11071-020-05539-0
37.
Bukhari
,
A. H.
,
Raja
,
M. A. Z.
,
Rafiq
,
N.
,
Shoaib
,
M.
,
Kiani
,
A. K.
, and
Shu
,
C.-M.
,
2022
, “
Design of Intelligent Computing Networks for Nonlinear Chaotic Fractional Rossler System
,”
Chaos Solit. Fractals
,
157
, p.
111985
.10.1016/j.chaos.2022.111985
38.
Khader
,
M. M.
,
2022
, “
Generalized Fractional-Order Legendre Polynomials and Its Treatment for Solving System of FDEs
,”
Indian J. Phys.
,
96
(
11
), pp.
3239
3246
.10.1007/s12648-021-02264-1
39.
Mahmoud
,
G. M.
,
Abed-Elhameed
,
T. M.
, and
Elbadry
,
M. M.
,
2021
, “
A Class of Different Fractional-Order Chaotic (Hyperchaotic) Complex Duffing-Van Der Pol Models and Their Circuits Implementations
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
12
), p.
121005
.10.1115/1.4052569
40.
Hassani
,
H.
,
Tenreiro Machado
,
J. A.
,
Naraghirad
,
E.
, and
Sadeghi
,
B.
,
2020
, “
Solving Nonlinear Systems of Fractional-Order Partial Differential Equations Using an Optimization Technique Based on Generalized Polynomials
,”
Appl. Math. Comput.
,
39
(
300
), pp.
1
19
.
41.
Beghami
,
W.
,
Maayah
,
B.
,
Bushnaq
,
S.
, and
Arqub
,
O. A.
,
2022
, “
The Laplace Optimized Decomposition Method for Solving Systems of Partial Differential Equations of Fractional-Order
,”
Int. J. Appl. Comput. Math.
,
8
(
2
), p.
52
.10.1007/s40819-022-01256-x
42.
Lenka
,
B. K.
, and
Bora
,
S. N.
,
2022
, “
New Global Asymptotic Stability Conditions for a Class of Nonlinear Time-Varying Fractional Systems
,”
Eur. J. Control
,
63
, pp.
97
106
.10.1016/j.ejcon.2021.09.008
43.
Zhang
,
Z.
,
Wang
,
Y.
,
Zhang
,
J.
,
Ai
,
Z.
, and
Liu
,
F.
,
2022
, “
Novel Stability Results of Multivariable Fractional-Order System With Time Delay
,”
Chaos Solitons Fractals
,
157
, p.
111943
.10.1016/j.chaos.2022.111943
44.
Yadav
,
V. K.
,
Shukla
,
V. K.
, and
Das
,
S.
,
2021
, “
Exponential Synchronization of Fractional-Order Complex Chaotic Systems and Its Application
,”
Chaos Solitons Fractals
,
147
, p.
110937
.10.1016/j.chaos.2021.110937
45.
Luc
,
N. H.
,
Kumar
,
D.
,
Hang
,
L. T. D.
, and
Can
,
N. H.
,
2020
, “
On a Final Value Problem for a Nonhomogeneous Fractional Pseudo-Parabolic Equation
,”
Alexandria Eng. J.
,
59
(
6
), pp.
4353
4364
.10.1016/j.aej.2020.07.041
46.
Huang
,
X.
,
Lin
,
W.
, and
Yang
,
B.
,
2005
, “
Global Finite-Time Stabilisation of a Class of Uncertain Nonlinear Systems
,”
Automatica
,
41
(
5
), pp.
881
888
.10.1016/j.automatica.2004.11.036
47.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
1998
, “
Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators
,”
IEEE Trans. Autom. Control
,
43
(
5
), pp.
678
682
.10.1109/9.668834
48.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
2000
, “
Finite Time Stability of Continuous Autonomous Systems
,”
SIAM J. Control Optim.
,
38
(
3
), pp.
751
766
.10.1137/S0363012997321358
49.
Huang
,
S.
, and
Wang
,
B.
,
2019
, “
Stabilization Conditions for a Class of Fractional-Order Nonlinear Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
5
), p.
054501
.10.1115/1.4042999
50.
Aghababa
,
M. P.
,
2020
, “
Robust Finite-Time Stabilization of Fractional-Order Chaotic Systems Based on Fractional Lyapunov Stability Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021010
.10.1115/1.4005323
51.
Lu
,
S.
,
Wang
,
X.
, and
Wang
,
L.
,
2020
, “
Finite-Time Adaptive Neural Network Control for Fractional-Order Chaotic PMSM Via Command Filtered Backstepping
,”
Adv. Differ. Equations.
,
2020
(
1
), p.
21
.10.1186/s13662-020-02572-6
52.
Yang
,
Z.
,
Zhang
,
J.
,
Zhang
,
Z.
, and
Mei
,
J.
,
2023
, “
An Improved Criterion on Finite-Time Stability for Fractional-Order Fuzzy Cellular Neural Networks Involving Leakage and Discrete Delays
,”
Math. Comput. Simul.
,
203
, pp.
910
925
.10.1016/j.matcom.2022.07.028
53.
Shao
,
K.
,
Guo
,
H.
, and
Han
,
F.
,
2020
, “
Finite-Time Projective Synchronization of Fractional-Order Chaotic Systems Via Soft Variable Structure Control
,”
J. Mech. Sci. Technol.
,
34
(
1
), pp.
369
376
.10.1007/s12206-019-1236-7
54.
Mai, V. T., and Dinh, C. H.,
2019
, “
Robust Finite-Time Stability and Stabilization of a Class of Fractional-Order Switched Nonlinear Systems
,”
J. Syst. Sci. Complex
,
32
, pp.
1479
1497
.10.1007/s11424-019-7394-y
55.
Wang
,
Z.
,
Liu
,
J.
,
Zhang
,
F.
, and
Leng
,
S.
,
2019
, “
Hidden Chaotic Attractors and Synchronization for a New Fractional-Order Chaotic System
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
8
), p.
081010
.10.1115/1.4043670
56.
Song
,
S.
,
Zhang
,
B.
,
Xia
,
J.
, and
Zhang
,
Z.
,
2020
, “
Adaptive Backstepping Hybrid Fuzzy Sliding Mode Control for Uncertain Fractional-Order Nonlinear Systems Based on Finite-Time Scheme
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
50
(
4
), pp.
1559
1569
.10.1109/TSMC.2018.2877042
57.
Yang
,
Z.
,
Zhang
,
J.
,
Hu
,
J.
, and
Mei
,
J.
,
2021
, “
New Results on Finite-Time Stability for Fractional-Order Neural Networks With Proportional Delay
,”
Neurocomputing
,
442
, pp.
327
336
.10.1016/j.neucom.2021.02.082
58.
Huang
,
L.
,
Li
,
W.
,
Xiang
,
J.
, and
Zhu
,
G.
,
2022
, “
Adaptive Finite-Time Synchronization of Fractional-Order Memristor Chaotic System Based on Sliding-Mode Control
,”
Eur. Phys. J. Spec. Top.
,
231
(
16–17
), pp.
3109
3118
.10.1140/epjs/s11734-022-00564-z
59.
Sinha
,
G. R.
,
2020
,
Modern Optimization Methods for Science, Engineering and Technology
,
IOP Publishing Ltd
., Temple Circus, Temple Way, Bristol, UK.
60.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
61.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
62.
Li
,
C. P.
, and
Deng
,
W. H.
,
2007
, “
Remarks on Fractional Derivatives
,”
Appl. Math. Comput.
,
187
(
2
), pp.
777
784
.10.1016/j.amc.2006.08.163
63.
Hartley
,
T. T.
,
Lorenzo
,
C. F.
, and
Qammer
,
H. K.
,
1995
, “
Chaos in a Fractional-Order Chua's System
,”
IEEE Trans. Circuits Syst. I
,
42
(
8
), pp.
485
490
.10.1109/81.404062
64.
Matignon
,
D.
,
1996
, “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,”
Computational Engineering in Systems and Application Multi-Conference, IMACS, IEEE-SMC Proceedings
,
Lille, France
, July 9–12, pp.
963
968
.
65.
Gong
,
P.
,
2017
, “
Distributed Tracking of Heterogeneous Nonlinear Fractional-Order Multi-Agent Systems With an Unknown Leader
,”
J. Franklin Inst.
,
354
(
5
), pp.
2226
2244
.10.1016/j.jfranklin.2017.01.001
66.
Huang
,
C. F.
,
Cheng
,
K. H.
, and
Yan
,
J. J.
,
2009
, “
Robust Chaos Synchronization of Four-Dimensional Energy Resource Systems Subject to Unmatched Uncertainties
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
6
), pp.
2784
2792
.10.1016/j.cnsns.2008.09.017
67.
Meng
,
D.
,
2015
, “
Neural Networks Adaptive Synchronization for Four-Dimension Energy Resource System With Unknown Dead Zones
,”
Neurocomputing
,
151
(
3
), pp.
1495
1499
.10.1016/j.neucom.2014.10.034
68.
Duarte-Mermoud
,
M. A.
,
Aguila-Camacho
,
N.
,
Gallegos
,
J. A.
, and
Castro-Linares
,
R.
,
2015
, “
Using General Quadratic Lyapunov Functions to Prove Lyapunov Uniform Stability for Fractional-Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
650
659
.10.1016/j.cnsns.2014.10.008
69.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2010
, “
Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–Leffler Stability
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1810
1821
.10.1016/j.camwa.2009.08.019
70.
Zhao
,
W.
,
Wang
,
L.
, and
Mirjalili
,
S.
,
2022
, “
Artificial Hummingbird Algorithm: A New Bio-Inspired Optimizer With Its Engineering Applications
,”
Comput. Methods Appl. Mech. Eng.
,
388
, pp.
1
13
.10.1016/j.cma.2021.114194
71.
Soukkou
,
A.
,
Khellaf
,
A.
,
Leulmi
,
S.
, and
Grimes
,
M.
,
2008
, “
Control of Dynamical Systems: An Intelligent Approach
,”
Int. J. Control Autom. Syst.
,
6
(
4
), pp.
583
595
.
72.
Lavanya
,
S.
,
Pradeep
,
C.
, and
Nagarani
,
S.
,
2020
, “
Projective Synchronization of Fractional-Order Chaotic Energy Resource Systems Via Linear Control Based on Takagi-Sugeno Fuzzy Model
,”
AIP Conf. Proc.
,
2261
, p.
030127
.10.1063/5.0017268
You do not currently have access to this content.