Abstract

Contact simulation is essential in modeling mechanical systems. The contact models require accurate geometric information, which is determined through collision detection methods. When the mechanical system includes flexible bodies such as structural components, the dynamic formulation and collision detection can be more challenging, as the geometric boundaries of such components keep changing during the simulation. The floating frame of reference (FFR) formulation is suitable for flexible systems with small deformation. In this work, a stable and efficient dynamic simulation method is introduced for flexible systems with contact based on the FFR formulation. In addition, a curve-based collision detection method is proposed, which is more consistent with the dynamic formulation and more efficient than common existing collision detection methods. Case studies of flexible beams and multibody systems are employed to demonstrate the performance of the proposed dynamic simulation and collision detection methods.

References

1.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Con- Tact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.10.1016/j.mechmachtheory.2012.02.010
2.
Andrews
,
S.
,
Erleben
,
K.
, and
Ferguson
,
Z.
,
2022
, “
Contact and Friction Simulation for Computer Graphics
,”
ACM SIGGRAPH 2022 Courses
, Vancouver, BC, Canada, Aug. 7–11, pp.
1
172
.10.1145/3532720.3535640
3.
Shabana
,
A. A.
,
2018
,
Computational Continuum Mechanics
,
Wiley
, Hoboken, NJ.
4.
Shabana
,
A. A.
,
2020
,
Dynamics of Multibody Systems
,
Cambridge University Press
, Cambridge, UK.
5.
Shabana
,
A.
, and
Schwertassek
,
R.
,
1998
, “
Equivalence of the Floating Frame of Reference Approach and Finite Element Formulations
,”
Int. J. Non-Linear Mech.
,
33
(
3
), pp.
417
432
.10.1016/S0020-7462(97)00024-3
6.
Erleben
,
K.
,
2018
, “
Methodology for Assessing Mesh-Based Contact Point Methods
,”
ACM Trans. Graphics (TOG)
,
37
(
3
), pp.
1
30
.10.1145/3096239
7.
Jiménez
,
P.
,
Thomas
,
F.
, and
Torras
,
C.
,
2001
, “
3D Collision Detection: A Survey
,”
Comput. Graph.
,
25
(
2
), pp.
269
285
.10.1016/S0097-8493(00)00130-8
8.
Shabana
,
A. A.
,
Hussien
,
H. A.
, and
Escalona
,
J.
,
1998
, “
Application of the Absolute Nodal Coordinate Formulation to Large Rotation and Large Deformation Problems
,”
ASME J. Mech. Des.
, 120(2), pp.
188
195
.10.1115/1.2826958
9.
Theodore
,
R. J.
, and
Ghosal
,
A.
,
1995
, “
Comparison of the Assumed Modes and Finite Element Models for Flexible Multilink Manipulators
,”
Int. J. Rob. Res.
,
14
(
2
), pp.
91
111
.10.1177/027836499501400201
10.
Gholami
,
F.
,
Nasri
,
M.
,
Kövecses
,
J.
, and
Teichmann
,
M.
,
2017
, “
A Fast Algorithm for Contact Dynamics of Multibody Systems Using the Box Friction Model
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011016
.10.1115/1.4034396
11.
Anitescu
,
M.
, and
Potra
,
F. A.
,
1997
, “
Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems
,”
Nonlinear Dyn.
,
14
(
3
), pp.
231
247
.10.1023/A:1008292328909
12.
Cottle
,
R. W.
,
Pang
,
J.-S.
, and
Stone
,
R. E.
,
2009
,
The Linear Complementarity Problem
,
SIAM
, Philadelphia, PA.
13.
Murty
,
K. G.
, and
Yu
,
F.-T.
,
1988
,
Linear Complementarity, Linear and Nonlinear Programming
, Vol.
3
,
Citeseer
, University Park, PA.
14.
Júdice
,
J. J.
, and
Pires
,
F. M.
,
1994
, “
A Block Principal Pivoting Algorithm for Large-Scale Strictly Monotone Linear Complementarity Problems
,”
Comput. Oper. Res.
,
21
(
5
), pp.
587
596
.10.1016/0305-0548(94)90106-6
15.
Ericson
,
C.
,
2004
,
Real-Time Collision Detection
,
CRC Press
, Boca Raton, FL.
16.
Dai
,
X.
,
Raoofian
,
A.
,
Kövecses
,
J.
, and
Teichmann
,
M.
,
2024
, “
Model-Based co-Simulation of Flexible Mechanical Systems With Contacts Using Reduced Interface Models
,”
IEEE Rob. Autom. Lett.
,
9
(
1
), pp.
239
246
.10.1109/LRA.2023.3332501
You do not currently have access to this content.