Abstract

Steady-state rotary periodic responses of mechanisms lead to stress cycling in flexible structures or connecting joints, which in turn can result in structural fatigue. A general approach is developed to study rotary periodic solutions of rigid and flexible mechanisms with large spatial rotations based on the incremental harmonic balance (IHB) method. The challenge in analyzing such dynamic systems emanates from the noncommutativity of the spatial rotation and the nonsuperposition nature of the rotational coordinates. The generally used rotational coordinates, such as Euler angles, cannot be expanded into Fourier series, which prevents direct usage of the IHB method. To overcome the problem, the natural coordinates method and absolute nodal coordinate formulation (ANCF) are used herein for the dynamic modeling of the rigid and flexible bodies, respectively. The absolute positions and gradients are used as generalized coordinates, and rotational coordinates are naturally avoided. Equations of motions of the system are differential-algebraic equations (DAEs), and they are solved by the IHB method to obtain the steady-state rotary periodic solutions. The effectiveness of the proposed approach is verified by the simulation of rigid and flexible examples with spatial rotations. The approach is general and robust, and it has the potential to be further extended for other extensive multibody dynamic systems.

References

1.
Brüls
,
O.
, and
Golinval
,
J. C.
,
2008
, “
On the Numerical Damping of Time Integrators for Coupled Mechatronic Systems
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
6–8
), pp.
577
588
.10.1016/j.cma.2007.08.007
2.
Ri
,
K.
,
Jong
,
Y.
,
Yun
,
C.
,
Kim
,
K.
, and
Han
,
P.
,
2022
, “
Nonlinear Vibration and Stability Analysis of a Flexible Rotor-SFDs System With Cubic Nonlinearity
,”
Nonlinear Dyn.
,
109
(
3
), pp.
1441
1461
.10.1007/s11071-022-07616-y
3.
Colaïtis
,
Y.
, and
Batailly
,
A.
,
2022
, “
Stability Analysis of Periodic Solutions Computed for Blade-Tip/Casing Contact Problems
,”
J. Sound Vib.
,
538
, p.
117219
.10.1016/j.jsv.2022.117219
4.
Lau
,
S.
,
Cheung
,
Y.
, and
Wu
,
S.
,
1982
, “
Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Elastic Systems
,”
ASME J. Appl. Mech.
,
49
(
4
), pp.
849
853
.10.1115/1.3162626
5.
Pan
,
J. C.
,
Guan
,
Z. Q.
,
Sun
,
W. C.
, and
Zeng
,
Y.
,
2022
, “
Nonlinear Oscillations of a Dual-Joint System Involving Simultaneous 1:1 and 1:2 Internal Resonances
,”
J. Sound Vib.
,
527
, p.
116807
.10.1016/j.jsv.2022.116807
6.
Yan
,
J. F.
, and
Huang
,
Z. H.
,
2022
, “
Analytical Approximations for Dry Friction-Induced Stick–Slip and Pure-Slip Vibration Amplitudes of a Self-Excited Smooth and Discontinuous Oscillator
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
3
), p.
031001
.10.1115/1.4052873
7.
Vadcard
,
T.
,
Batailly
,
A.
, and
Thouverez
,
F.
,
2022
, “
On Harmonic Balance Method-Based Lagrangian Contact Formulations for Vibro-Impact Problems
,”
J. Sound Vib.
,
531
, p.
116950
.10.1016/j.jsv.2022.116950
8.
Leung
,
A. Y. T.
, and
Chui
,
S. K.
,
1995
, “
Non-Linear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
181
(
4
), pp.
619
633
.10.1006/jsvi.1995.0162
9.
Zheng
,
Z. C.
,
Lu
,
Z. R.
,
Chen
,
Y. M.
,
Liu
,
J. K.
, and
Liu
,
G.
,
2022
, “
A Modified Incremental Harmonic Balance Method Combined With Tikhonov Regularization for Periodic Motion of Nonlinear System
,”
ASME J. Appl. Mech.
,
89
(
2
), p.
021001
.10.1115/1.4052573
10.
Ju
,
R.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2021
, “
An Efficient Galerkin Averaging-Incremental Harmonic Balance Method for Nonlinear Dynamic Analysis of Rigid Multibody Systems Governed by Differential-Algebraic Equations
,”
Nonlinear Dyn.
,
105
(
1
), pp.
475
498
.10.1007/s11071-021-06367-6
11.
Martins
,
T. S.
,
Trainotti
,
F.
,
Zwölfer
,
A.
, and
Afonso
,
F.
,
2023
, “
A Python Implementation of a Robust Multi-Harmonic Balance With Numerical Continuation and Automatic Differentiation for Structural Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
7
), p.
071008
.10.1115/1.4062424
12.
Hou
,
J. Y.
,
Yang
,
S. P.
,
Li
,
Q.
, and
Liu
,
Y. Q.
,
2022
, “
Analysis of Dynamic Characteristics of a Fractional-Order Spur Gear Pair With Internal and External Excitations
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
2
), p.
021004
.10.1115/1.4052874
13.
Ju
,
R.
, and
Zhu
,
W. D.
,
2021
, “
An Optimized Efficient Galerkin Averaging-Incremental Harmonic Balance Method for High-Dimensional Spatially Discretized Models of Continuous Systems Based on Parallel Computing
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
12
), p.
121003
.10.1115/1.4052147
14.
Kim
,
K.
,
Ri
,
K.
,
Yun
,
C.
,
Jong
,
Y.
, and
Han
,
P.
,
2022
, “
Nonlinear Forced Vibration and Stability Analysis of Nonlinear Systems Combining the IHB Method and the AFT Method
,”
Comput. Struct.
,
264
, p.
106771
.10.1016/j.compstruc.2022.106771
15.
Pirmoradian
,
M.
,
Keshmiri
,
M.
, and
Karimpour
,
H.
,
2014
, “
Instability and Resonance Analysis of a Beam Subjected to Moving Mass Loading Via Incremental Harmonic Balance Method
,”
J. Vibroeng.
,
16
(
6
), pp.
2779
2789
.https://www.extrica.com/article/15167
16.
Zhang
,
S.
,
Fan
,
W.
, and
Yang
,
C.
,
2022
, “
Semi-Analytical Solution to the Steady-State Periodic Dynamic Response of an Infinite Beam Carrying a Moving Vehicle
,”
Int. J. Mech. Sci.
,
226
, p.
107409
.10.1016/j.ijmecsci.2022.107409
17.
Dou
,
S.
, and
Jensen
,
J. S.
,
2015
, “
Optimization of Nonlinear Structural Resonance Using the Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
334
, pp.
239
254
.10.1016/j.jsv.2014.08.023
18.
Ranjbarzadeh
,
H.
, and
Kakavand
,
F.
,
2019
, “
Determination of Nonlinear Vibration of 2DOF System With an Asymmetric Piecewise-Linear Compression Spring Using Incremental Harmonic Balance Method
,”
Eur. J. Mech. A-Solids
,
73
, pp.
161
168
.10.1016/j.euromechsol.2018.07.005
19.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2014
, “
Nonlinear Dynamics of a High-Dimensional Model of a Rotating Euler-Bernoulli Beam Under the Gravity Load
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101007
.10.1115/1.4028046
20.
Han
,
S. L.
, and
Bauchau
,
O. A.
,
2018
, “
On the Global Interpolation of Motion
,”
Comput. Methods Appl. Mech. Eng.
,
337
, pp.
352
386
.10.1016/j.cma.2018.04.002
21.
Han
,
S.
, and
Bauchau
,
O. A.
,
2018
, “
Spectral Collocation Methods for the Periodic Solution of Flexible Multibody Dynamics
,”
Nonlinear Dyn.
,
92
(
4
), pp.
1599
1618
.10.1007/s11071-018-4149-6
22.
Han
,
S.
, and
Bauchau
,
O. A.
,
2020
, “
Simulation and Stability Analysis of Periodic Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
50
(
4
), pp.
381
413
.10.1007/s11044-020-09741-1
23.
de Jalón
,
J. G.
,
2007
, “
Twenty-Five Years of Natural Coordinates
,”
Multibody Syst. Dyn.
,
18
(
1
), pp.
15
33
.10.1007/s11044-007-9068-0
24.
Otsuka
,
K.
,
Makihara
,
K.
, and
Sugiyama
,
H.
,
2022
, “
Recent Advances in the Absolute Nodal Coordinate Formulation: Literature Review From 2012 to 2020
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
8
), p.
080803
.10.1115/1.4054113
25.
Shabana
,
A. A.
,
2023
, “
An Overview of the ANCF Approach, Justifications for Its Use, Implementation Issues, and Future Research Directions
,”
Multibody Syst. Dyn.
,
58
(
3–4
), pp.
433
477
.10.1007/s11044-023-09890-z
26.
Shabana
,
A. A.
,
2015
, “
Definition of ANCF Finite Elements
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
054506
.10.1115/1.4030369
27.
Yang
,
S. M.
,
Zhu
,
X. Q.
, and
Ren
,
H.
,
2023
, “
Dynamic Analysis of a Deep-Towed Seismic System Based on a Flexible Multi-Body Dynamics Frame
,”
Ocean Eng.
,
279
, p.
114587
.10.1016/j.oceaneng.2023.114587
28.
Chen
,
Z.
,
Ren
,
H.
,
Fan
,
W.
, and
Zhang
,
L.
,
2024
, “
Dynamic Modeling and Analysis of a Large-Scale Hoop-Column Antenna Using the Referenced Nodal Coordinate Formulation
,”
Appl. Math. Model.
,
125
, pp.
738
755
.10.1016/j.apm.2023.09.003
29.
Fan
,
W.
,
Zhang
,
S. H.
,
Zhu
,
W. D.
, and
Zhu
,
H.
,
2022
, “
An Efficient Dynamic Formulation for the Vibration Analysis of a Multi-Span Power Transmission Line Excited by a Moving Deicing Robot
,”
Appl. Math. Model.
,
103
, pp.
619
635
.10.1016/j.apm.2021.10.040
30.
Guo
,
J. J.
,
Sun
,
J. L.
,
Wei
,
G.
,
Li
,
X. Y.
, and
Jin
,
D. P.
,
2023
, “
Dynamics Modeling and Experiment of a Large Space Umbrella Truss Structure
,”
Adv. Space Res.
,
71
(
11
), pp.
4814
4828
.10.1016/j.asr.2023.01.048
31.
Jiang
,
G. Q.
,
Jiang
,
J. P.
,
Yang
,
G.
, and
Li
,
Q. J.
,
2023
, “
Orbit-Attitude-Structure Coupled Modelling Method in Local Translational Coordinate Frame for Multibody Systems
,”
Int. J. Nonlinear Mech.
,
157
, p.
104562
.10.1016/j.ijnonlinmec.2023.104562
32.
Sun
,
J. L.
,
Chen
,
E.
,
Chen
,
T.
, and
Jin
,
D. P.
,
2022
, “
Spin Dynamics of a Long Tethered Sub-Satellite System in Geostationary Orbit
,”
Acta Astronaut.
,
195
, pp.
12
26
.10.1016/j.actaastro.2022.02.026
33.
Wang
,
T. F.
,
Mikkola
,
A.
, and
Matikainen
,
M. K.
,
2022
, “
An Overview of Higher-Order Beam Elements Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
9
), p.
091001
.10.1115/1.4054348
34.
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2008
, “
On the Correct Representation of Bending and Axial Deformation in the Absolute Nodal Coordinate Formulation With an Elastic Line Approach
,”
J. Sound Vib.
,
318
(
3
), pp.
461
487
.10.1016/j.jsv.2008.04.019
35.
García de Jalón
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge
,
Springer
,
Berlin, Germany
.
36.
Yuan
,
Y. X.
,
2015
, “
Recent Advances in Trust Region Algorithms
,”
Math. Program.
,
151
(
1
), pp.
249
281
.10.1007/s10107-015-0893-2
37.
Akima
,
H.
,
1970
, “
A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures
,”
J. ACM
,
17
(
4
), pp.
589
602
.10.1145/321607.321609
38.
Zhou
,
P.
,
Ren
,
H.
, and
Masarati
,
P.
,
2022
, “
A Relaxed Coupling Method for Algebraically Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
55
(
1–2
), pp.
57
81
.10.1007/s11044-022-09825-0
39.
Kobis
,
M. A.
, and
Arnold
,
M.
,
2016
, “
Convergence of Generalized-α Time Integration for Nonlinear Systems With Stiff Potential Forces
,”
Multibody Syst. Dyn.
,
37
(
1
), pp.
107
125
.10.1007/s11044-015-9495-2
You do not currently have access to this content.