Abstract

The Haar wavelet collocation method, a wavelet technique, is discussed in this article to examine the mathematical model of Hepatitis B virus infection. We took into account the HB virus, cytotoxic T lymphocytes (CTL) immune response, birth rate, death rate, and infected and uninfected hepatocytes to identify the dynamics of the hepatitis B virus infection. An ordinary differential equation (ODE) system that is nonlinear makes up this model. Using this method, the Hepatitis B Virus model can be solved by expressing each dependent variable as a Haar wavelet and then converting the system of ordinary differential equations into a system of nonlinear algebraic equations. The unknown coefficient values are thought to be extracted using the collocation procedure and the Newton–Raphson method. Tables and graphs are used to illustrate the characteristics of the Hepatitis B virus. The obtained results show that the current approach outperforms other approaches found in the literature in terms of accuracy. Mathematica software is utilized to obtain numerical results and nature.

References

1.
Su
,
B.
,
Zhou
,
W.
,
Dorman
,
K. S.
, and
Jones
,
D. E.
,
2009
, “
Mathematical Modelling of Immune Response in Tissues
,”
Comput. Math. Methods Med.
,
10
(
1
), pp.
9
38
.10.1080/17486700801982713
2.
Min
,
L.
,
Su
,
Y.
, and
Kuang
,
Y.
,
2008
, “
Mathematical Analysis of a Basic Virus Infection Model With Application to HBV Infection
,”
Rocky Mt. J. Math.
,
38
(
5
), pp.
1573
1585
.10.1216/RMJ-2008-38-5-1573
3.
Zou
,
L.
,
Zhang
,
W.
, and
Ruan
,
S.
,
2010
, “
Modeling the Transmission Dynamics and Control of Hepatitis B Virus in China
,”
J. Theor. Biol.
,
262
(
2
), pp.
330
338
.10.1016/j.jtbi.2009.09.035
4.
Thornley
,
S.
,
Bullen
,
C.
, and
Roberts
,
M.
,
2008
, “
Hepatitis B in a High Prevalence New Zealand Population: A Mathematical Model Applied to Infection Control Policy
,”
J. Theor. Biol.
,
254
(
3
), pp.
599
603
.10.1016/j.jtbi.2008.06.022
5.
Khabouze
,
M.
,
Hattaf
,
K.
, and
Yousfi
,
N.
,
2014
, “
Stability Analysis of an Improved HBV Model With CTL Immune Response
,”
Int. Scholarly Res. Not.
,
2014
, pp.
1
8
.10.1155/2014/407272
6.
Zhang
,
S.
, and
Xu
,
X.
,
2016
, “
A Mathematical Model for Hepatitis B With Infection-Age Structure
,”
Discrete Contin. Dyn. Syst.-Ser. B
,
21
(
4
), pp. 1329–1346.10.3934/dcdsb.2016.21.1329
7.
Baleanu
,
D.
,
Mohammadi
,
H.
, and
Rezapour
,
S.
,
2020
, “
Analysis of the Model of HIV-1 Infection of CD4+ CD4+ T-Cell With a New Approach of Fractional Derivative
,”
Adv. Differ. Eq.
,
2020
(
1
), pp.
1
17
.10.1186/s13662-020-02544-w
8.
Dumitru
,
B.
,
Jajarmi
,
A.
,
Mohammadi
,
H.
, and
Rezapour
,
S.
,
2020
, “
A New Study on the Mathematical Modelling of Human Liver With Caputo–Fabrizio Fractional Derivative
,”
Chaos Solit. Fractals
,
134
, p.
109705
.10.1016/j.chaos.2020.109705
9.
Aniji
,
M.
,
Kavitha
,
N.
, and
Balamuralitharan
,
S.
,
2020
, “
Mathematical Modeling of Hepatitis B Virus Infection for Antiviral Therapy Using LHAM
,”
Adv. Differ. Eq.
,
2020
(
1
), p.
408
.10.1186/s13662-020-02770-2
10.
Lepik
,
Ü.
,
2005
, “
Numerical Solution of Differential Equations Using Haar Wavelets
,”
Math. Comput. Simul.
,
68
(
2
), pp.
127
143
.10.1016/j.matcom.2004.10.005
11.
Guf
,
J. S.
, and
Jiang
,
W. S.
,
1996
, “
The Haar Wavelets Operational Matrix of Integration
,”
Int. J. Syst. Sci.
,
27
(
7
), pp.
623
628
.10.1080/00207729608929258
12.
Lepik
,
Ü.
,
2007
, “
Application of the Haar Wavelet Transform to Solving Integral and Differential Equations
,”
PEAS. Physics. Mathematics.
, 56(
1)
, pp.
28
46
.10.3176/phys.math.2007.1.03
13.
Chang
,
P.
, and
Piau
,
P.
,
2008
, “
Haar Wavelet Matrices Designation in Numerical Solution of Ordinary Differential Equations
,”
IAENG Int. J. Appl. Math.
,
38
(
3
), pp.
1
5
.https://www.iaeng.org/IJAM/issues_v38/issue_3/IJAM_38_3_11.pdf
14.
Shiralashetti
,
S. C.
, and
Harishkumar
,
E.
,
2020
, “
Haar Wavelet Matrices for the Numerical Solution of System of Ordinary Differential Equations
,”
Malaya J. Matematik
,
S
(
1
), pp.
144
147
.https://www.malayajournal.org/articles/MJM0S200027.pdf
15.
Berwal
,
N.
,
Panchal
,
D.
, and
Parihar
,
C. L.
,
2013
, “
Solving System of Linear Differential Equations Using Haar Wavelet
,”
Appl. Math. Comput. Intell.
,
2
(
2
), pp.
183
193
.https://www.researchgate.net/publication/321996605_Solving_system_of_linear_differential_equations_using_haar_wavelet
16.
Shiralasetti
,
S.
, and
Kumbinarasaiah
,
S.
,
2017
, “
Some Results on Haar Wavelets Matrix Through Linear Algebra
,”
Wavelet Linear Algebra
,
4
(
2
), pp.
49
59
.10.22072/WALA.2018.53432.1093
17.
Preetham
,
M. P.
, and
Kumbinarasaiah
,
S.
,
2023
, “
A Numerical Study of Two-Phase Nanofluid MHD Boundary Layer Flow With Heat Absorption or Generation and Chemical Reaction Over an Exponentially Stretching Sheet by Haar Wavelet Method
,”
Numer. Heat Transfer, Part B: Fundam.
,
85
(
6
), pp.
706
735
.10.1080/10407790.2023.2253364
18.
Darweesh
,
A.
,
Al-Khaled
,
K.
, and
Al-Yaqeen
,
O. A.
,
2023
, “
Haar Wavelets Method for Solving Class of Coupled Systems of Linear Fractional Fredholm Integro-Differential Equations
,”
Heliyon
,
9
(
9
), p.
e19717
.10.1016/j.heliyon.2023.e19717
19.
Kumbinarasaiah
,
S.
, and
Manohara
,
G.
,
2023
, “
Modified Bernoulli Wavelets Functional Matrix Approach for the HIV Infection of CD4+ T Cells Model
,”
Results Control Optim.
,
10
, p.
100197
.10.1016/j.rico.2022.100197
20.
Bujurke
,
N. M.
,
Salimath
,
C. S.
, and
Shiralashetti
,
S. C.
,
2008
, “
Numerical Solution of Stiff Systems From Nonlinear Dynamics Using Single-Term Haar Wavelet Series
,”
Nonlinear Dyn.
,
51
(
4
), pp.
595
605
.10.1007/s11071-007-9248-8
21.
Shiralashetti
,
S. C.
, and
Kumbinarasaiah
,
S.
,
2020
, “
Laguerre Wavelets Exact Parseval Frame-Based Numerical Method for the Solution of System of Differential Equations
,”
Int. J. Appl. Comput. Math.
,
6
(
4
), pp.
1
16
.10.1007/s40819-020-00848-9
22.
Kumar
,
M.
,
Mishra
,
S. N.
, and,
Vivek
,
2023
, “
Solution of Linear and Nonlinear Singular Value Problems Using Operational Matrix of Integration of Taylor Wavelets
,”
J. Taibah Univ. Sci.
,
17
(
1
), p.
2241716
.10.1080/16583655.2023.2241716
23.
Bujurke
,
N. M.
,
Shiralashetti
,
S. C.
, and
Salimath
,
C. S.
,
2009
, “
An Application of Single-Term Haar Wavelet Series in the Solution of Nonlinear Oscillator Equations
,”
J. Comput. Appl. Math.
,
227
(
2
), pp.
234
244
.10.1016/j.cam.2008.03.012
24.
Srinivasa
,
K.
,
Baskonus
,
H. M.
, and
Guerrero Sánchez
,
Y.
,
2021
, “
Numerical Solutions of the Mathematical Models on the Digestive System and Covid-19 Pandemic by Hermite Wavelet Technique
,”
Symmetry
,
13
(
12
), p.
2428
.10.3390/sym13122428
25.
Majak
,
J.
,
Shvartsman
,
B. S.
,
Kirs
,
M.
,
Pohlak
,
M.
, and
Herranen
,
H.
,
2015
, “
Convergence Theorem for the Haar Wavelet Based Discretization Method
,”
Compos. Struct.
,
126
, pp.
227
232
.10.1016/j.compstruct.2015.02.050
26.
Chen
,
C. F.
, and
Hsiao
,
C. H.
,
1997
, “
Haar Wavelet Method for Solving Lumped and Distributed-Parameter Systems
,”
IEE Proc.-Control Theory Appl.
,
144
(
1
), pp.
87
94
.10.1049/ip-cta:19970702
27.
Hsiao
,
C. H.
,
1997
, “
State Analysis of Linear Time Delayed Systems Via Haar Wavelets
,”
Math. Comput. Simul.
,
44
(
5
), pp.
457
470
.10.1016/S0378-4754(97)00075-X
28.
Shiralashetti
,
S. C.
,
Deshi
,
A. B.
, and
Desai
,
P. M.
,
2016
, “
Haar Wavelet Collocation Method for the Numerical Solution of Singular Initial Value Problems
,”
Ain Shams Eng. J.
,
7
(
2
), pp.
663
670
.10.1016/j.asej.2015.06.006
You do not currently have access to this content.