The paper presents analytical and numerical results of the primary resonance of a Duffing oscillator with two distinct time delays in the linear feedback control under narrow-band random excitation. Using the method of multiple scales, the first-order and the second-order steady-state moments of the primary resonance are derived. For the case of two distinct time delays, the appropriate choices of the combinations of the feedback gains and the difference between two time delays are discussed from the viewpoint of vibration control and stability. The analytical results are in well agreement with the numerical results.

1.
Hale
,
J.
, 1977,
Theory of Functional Differential Equations
,
Springer-Verlag
,
New York
.
2.
Stepan
,
D.
, 1989,
Retarded Dynamical Systems: Stability and Characteristic Functions
,
Longman Scientific and Technical
,
Essex
.
3.
Hu
,
H. Y.
, and
Wang
,
Z. H.
, 2002,
Dynamics of Controlled Mechanical Systems With Delayed Feedback
,
Springer
,
Heidelberg
.
4.
Hu
,
H. Y.
,
Dowell
,
E. H.
, and
Virgin
,
L. N.
, 1998, “
Resonances of a Harmonically Forced Duffing Oscillator With Time Delay State Feedback
,”
Nonlinear Dyn.
0924-090X,
15
, pp.
311
327
.
5.
Wang
,
H. L.
,
Hu
,
H. Y.
, and
Wang
,
Z. H.
, 2004, “
Global Dynamics of a Duffing Oscillator Within Delayed Displacement Feedback
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
14
(
8
), pp.
2753
2775
.
6.
Ji
,
J. C.
, and
Leung
,
A. Y. T.
, 2002, “
Resonances of a Non-Linear s.d.o.f System With Two Time-Delays in Linear Feedback Control
,”
J. Sound Vib.
0022-460X,
253
(
5
), pp.
985
1000
.
7.
Maccari
,
A.
, 2001, “
The Response of a Parametrically Forced Van der Pol Oscillator to a Time Delay State Feedback
,”
Nonlinear Dyn.
0924-090X,
26
, pp.
105
119
.
8.
Klosek
,
M. M.
, 2004, “
Multi-Scale Analysis of Effects of Additive and Multiplicative Noise on Delay Differential Equations Near a Bifurcation Point
,”
Acta Phys. Pol. B
0587-4254,
35
, pp.
1387
1405
.
9.
Sun
,
Z. K.
,
Xu
,
W.
, and
Yang
,
X. L.
, 2006, “
Response of Nonlinear System to Random Narrow-Band Excitation With Time Delay State Feedback
,”
Journal of Vibration Engineering
,
19
, pp.
57
64
.
10.
Liu
,
Z. H.
, and
Zhu
,
W. Q.
, 2007, “
Stochastic Averaging of Quasi-Integrable Hamiltonian Systems With Delayed Feedback
,”
J. Sound Vib.
0022-460X,
299
, pp.
178
195
.
11.
Elbeyli
,
O.
,
Sun
,
J. Q.
, and
Ünal
,
G.
, 2005, “
A Semi-Discretization Method for Delayed Stochastic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
10
, pp.
85
94
.
12.
Dodla
,
R. R. V.
,
Sen
,
A.
, and
Johnston
,
G. L.
, 2003, “
Driven Response of Time Delay Coupled Limit Cycle Oscillators
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
8
, pp.
493
518
.
13.
Wedig
,
W. V.
, 1990, “
Invariant Measures and Lyapunov Exponents for Generalized Parameter Fluctuations
,”
Struct. Safety
0167-4730,
8
, pp.
13
25
.
14.
Rajan
,
S.
, and
Davies
,
H. G.
, 1988, “
Multiple Time Scaling of the Response of a Duffing Oscillator to Narrow-Band Random Excitation
,”
J. Sound Vib.
0022-460X,
123
, pp.
497
506
.
15.
Stratonovich
,
R. L.
, 1963,
Topics in the Theory of Random Noise
,
Gordon and Breach
,
New York
.
16.
Shinozuka
,
M.
, and
Jan
,
C.-M.
, 1972, “
Digital Simulation of Random Processes and Its Applications
,”
J. Sound Vib.
0022-460X,
25
, pp.
111
128
.
17.
Zhu
,
W. Q.
, 1992,
Random Vibration
,
Science Press
,
Beijing
.
You do not currently have access to this content.