The biped walking robot demonstrates a stable limit cycle on shallow slopes. In previous researches, this passive gait was shown to be sensitive to ground slope and initial conditions. In this paper, we discuss the feedback stabilization of a biped robot by the “energy shaping” technique. Two designs are proposed to reduce the sensitivity of the biped walking robot to slope and initial conditions. In the first design, a moving mass actuator is located on each link of the robot. The actuators are used to shape the potential energy of the biped robot so that it tracks the potential energy of a known passive gait of a similar biped robot on a different slope. Although the method is applied to a simple kneeless planar biped, our results are completely generalizable and may be applied to general n-link bipeds. The second design uses a momentum wheel, which is placed on the hip of the robot to shape the energy of the biped. We use the controlled Lagrangian method to design the controller, and the simulation is carried out to show its performance. In the controlled Lagrangian method, either the total energy or the Lagrangian of the uncontrolled system is modified so that the Euler–Lagrange equations derived from this modified expression, called the controlled Lagrangian function, describe the closed loop equations of the system.

1.
Bavarian
,
B.
,
Wyman
,
B. F.
, and
Hemami
,
H.
, 1983, “
Control of the Constrained Planar Simple Inverted Pendulum
,”
Int. J. Control
0020-7179,
37
, pp.
741
753
.
2.
Golliday
,
C. L.
, and
Hemami
,
H.
, 1977, “
An Approach to Analyzing Biped Locomotion Dynamics and Designing Robot Locomotion Controls
,”
IEEE Trans. Autom. Control
0018-9286,
22
, pp.
964
972
.
3.
McGeer
,
T.
, 1990, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
0278-3649,
9
, pp.
62
82
.
4.
Goswami
,
A.
,
Espiau
,
B.
, and
Keramane
,
A.
, 1997, “
Limit Cycle in a Passive Gait Biped and Passivity Mimicking Control Laws
,”
Auton. Rob.
0929-5593,
4
, pp.
273
286
.
5.
Ohta
,
H.
,
Yamakita
,
M.
, and
Furuta
,
K.
, 1999, “
From Passive to Active Dynamic Walking
,”
IEEE Conference on Decision and Control
,
Phoenix, AZ
, pp.
3883
3885
.
6.
Suzuki
,
S.
,
Furuta
,
K.
,
Pan
,
Y.
, and
Hatakeyama
,
S.
, 2001, “
Biped Walking Robot Control With Passive Walker Model by New VSC Servo
,”
American Control Conference
,
Arlington, VA
, pp.
107
112
.
7.
Kuo
,
A. D.
, 1999, “
Stabilization of Lateral Motion in Passive Dynamic Walking
,”
Int. J. Robot. Res.
0278-3649,
18
(
9
), pp.
917
930
.
8.
Spong
,
M. W.
, and
Bullo
,
F.
, 2005, “
Controlled Symmetries and Passive Walking
,”
IEEE Trans. Autom. Control
0018-9286,
50
, pp.
1025
1031
.
9.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
, 2003, “
Biomechanics and Muscle Coordination of Human Walking Part II: Lessons From Dynamical Simulations and Clinical Implications
,”
Gait and Posture
0966-6362,
17
, pp.
1
17
.
10.
Grishin
,
A. A.
,
Formalsky
,
A. M.
,
Lensky
,
A. V.
, and
Zhitomirsky
,
S. V.
, 1994, “
Dynamic Walking of a Vehicle With Two Telescopic Legs Controlled by Two Drives
,”
Int. J. Robot. Res.
0278-3649,
13
, pp.
137
147
.
11.
Bloch
,
A. M.
,
Leonard
,
N. E.
, and
Marsden
,
J. E.
, 1997, “
Stabilization of Mechanical Systems Using Controlled Lagrangians
,”
IEEE Conference on Decision and Control
,
San Diego, CA
, pp.
2356
2361
.
12.
Bloch
,
A. M.
,
Leonard
,
N. E.
, and
Marsden
,
J. E.
, 1998, “
Matching and Stabilization by the Method of Controlled Lagrangians
,”
IEEE Conference on Decision and Control
,
Tampa, FL
, pp.
1446
1451
.
13.
Bloch
,
A. M.
,
Krishnaprasad
,
P. S.
,
Marsden
,
J. E.
, and
Sanchez de Alvarez
,
G.
, 1992, “
Stabilization of Rigid Body Dynamics by Internal and External Torques
,”
Automatica
0005-1098,
28
, pp.
745
756
.
14.
Bloch
,
A. M.
,
Marsden
,
J. E.
, and
Sanchez de Alvarez
,
G.
, 1997, “
Stabilization of Relative Equilibria of Mechanical Systems With Symmetry
,”
Conference on Applied Mathematics
,
Notre Dame, Birkhauser
.
15.
Bloch
,
A. M.
,
Leonard
,
N. E.
, and
Marsden
,
J. E.
, 2000, “
Controlled Lagrangians and the Stabilization of Mechanical Systems. I: The First Matching Theorem
,”
IEEE Trans. Autom. Control
0018-9286,
45
, pp.
2253
2270
.
16.
Bloch
,
A. M.
,
Chang
,
D. E.
,
Leonard
,
N. E.
, and
Marsden
,
J. E.
, 2001, “
Controlled Lagrangians and the Stabilization of Mechanical Systems II: Potential Shaping
,”
IEEE Trans. Autom. Control
0018-9286,
46
, pp.
1556
1571
.
17.
Bloch
,
A. M.
,
Leonard
,
N. E.
, and
Marsden
,
J. E.
, 2001, “
Controlled Lagrangians and the Stabilization of Euler-Poincare Mechanical Systems
,”
Int. J. Robust Nonlinear Control
1049-8923,
11
, pp.
191
214
.
18.
Bloch
,
A. M.
,
Leonard
,
N. E.
, and
Marsden
,
J. E.
, 1999, “
Stabilization of the Pendulum on a Rotor Arm by the Method of Controlled Lagrangians
,”
IEEE International Conference on Robotics and Automation
,
Detroit, MI
.
19.
Alasty
,
A.
, and
Azadi Yazdi
,
E.
, 2007, “
Stabilization of the Pendulum on a Rotor Arm Using the Controlled Lagrangian Method
,”
IEEE GCC
, Manama, Bahrain.
20.
Goswami
,
A.
,
Espiau
,
B.
, and
Kermane
,
A.
, 1998, “
A Study of the Passive Gait of a Compass-Like Biped Robot: Symmetry and Chaos
,”
Int. J. Robot. Res.
0278-3649,
17
(
12
), pp.
1282
1301
.
21.
Chevva
,
K. R.
, 2005, “
Practical Challenges in the Method of Controlled Lagrangian
,” Ph.D. thesis, Virginia Polytechnic Institute and State University.
22.
Leonard
,
N. E.
, and
Graver
,
J. G.
, 2001, “
Model-Based Feedback Control of Autonomous Underwater Gliders
,”
IEEE J. Ocean. Eng.
0364-9059,
26
, pp.
633
645
.
23.
Chang
,
E.
, 2002, “
Controlled Lagrangian and Hamiltonian Systems
,” Ph.D. thesis, California Institute of Technology.
24.
Bullo
,
F.
, and
Lewis
,
A.
, 2004,
Geometric Control of Mechanical Systems
,
Springer
,
New York
.
25.
Auckly
,
D.
,
Kapitanski
,
L.
, and
White
,
W.
, 2000, “
Control of Nonlinear Underactuated Systems
,”
Commun. Pure Appl. Math.
0010-3640,
53
, pp.
354
369
.
26.
Bloch
,
A. M.
, 2003,
Nonholonomic Mechanics and Control
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.