This study presents an effort to explore the exploitation of dynamic instabilities and bifurcations in micro-electro-mechanical systems to realize novel methods and functionalities for mass sensing and detection. These instabilities are induced by exciting a microstructure with a nonlinear forcing composed of a dc parallel-plate electrostatic load and an ac harmonic load. The frequency of the ac load is tuned to be near the fundamental natural frequency of the structure (primary resonance) or its multiples (subharmonic resonance). For each excitation method, local bifurcations, such as saddle-node and pitchfork, and global bifurcations, such as the escape phenomenon, may occur. This work aims to explore the utilization of these bifurcations to design novel mass sensors and switches of improved characteristics. One explored concept of a device is a switch triggered by mass threshold. The basic idea of this device is based on the phenomenon of escape from a potential well. This device has the potential of serving as a smart switch that combines the functions of two devices: a sensitive gas/mass sensor and an electromechanical switch. The switch can send a strong electrical signal as a sign of mass detection, which can be used to actuate an alarming system or to activate a defensive or a security system. A second type of explored devices is a mass sensor of amplified response. The basic principle of this device is based on the jump phenomena encountered in pitchfork bifurcations during mass detection. This leads to an amplified response of the excited structure making the sensor more sensitive and its signal easier to be measured. As case studies, these device concepts are first demonstrated by simulations on clamped-clamped and cantilever microbeams. Results are presented using long-time integration for the equations of motion of a reduced-order model. An experimental case study of a capacitive sensor is presented illustrating the proposed concepts. It is concluded that exciting a microstructure at twice its fundamental natural frequency produces the most promising results for mass sensing and detection.

1.
Lange
,
D.
,
Brand
,
O.
, and
Baltes
,
H.
, 2002,
CMOS Cantilever Sensor Systems: Atomic-Force Microscopy and Gas Sensing Applications
,
Springer
,
Berlin
.
2.
Lange
,
D.
,
Hagleitner
,
C.
,
Hierlemann
,
A.
,
Brand
,
O.
, and
Baltes
,
H.
, 2002, “
Complementary Metal Oxide Semiconductor Cantilever Arrays on a Single Chip: Mass-Sensitive Detection of Volatile Organic Compounds
,”
Anal. Chem.
0003-2700,
74
, pp.
3084
3095
.
3.
Betts
,
T. A.
,
Tipple
,
C. A.
,
Sepaniak
,
M. J.
, and
Datskos
,
P. G.
, 2000, “
Selectivity of Chemical Sensors Based on Micro-Cantilevers Coated With Thin Polymer Films
,”
Anal. Chim. Acta
0003-2670,
422
, pp.
89
99
.
4.
Battiston
,
F. M.
,
Ramseyer
,
J. P.
,
Lang
,
H. P.
,
Baller
,
M. K.
,
Gerber
,
C.
,
Gimzewski
,
J. K.
,
Meyer
,
E.
, and
Güntherodt
,
H. J.
, 2001, “
A Chemical Sensor Based on a Microfabricated Cantilever Array With Simultaneous Resonance-Frequency and Bending Read-Out
,”
Sens. Actuators B
0925-4005,
77
, pp.
122
131
.
5.
Thundat
,
T.
,
Wachter
,
E. A.
,
Sharp
,
S. L.
, and
Warmack
,
R. J.
, 1995, “
Detection of Mercury Vapor Using Resonating Micro-Cantilevers
,”
Appl. Phys. Lett.
0003-6951,
66
, pp.
1695
1697
.
6.
Dufour
,
I.
,
Lochon
,
F.
,
Heinrich
,
S.
,
Josse
,
F.
, and
Rebière
,
D.
, 2007, “
Effect of Coating Viscoelasticity on Quality Factor and Limit of Detection of Microcantilever Chemical Sensors
,”
IEEE Sens. J.
1530-437X,
7
(
2
), pp.
230
236
.
7.
Lang
,
H. P.
,
Berger
,
R.
,
Battiston
,
F.
,
Ramseyer
,
J. P.
,
Meyer
,
E.
,
Andreoli
,
C.
,
Brugger
,
J.
,
Vettiger
,
P.
,
Despont
,
M.
,
Mezzacasa
,
T.
,
Scandella
,
L.
,
Guentherodt
,
H. J.
,
Gerber
,
C.
, and
Gimzewski
,
J. K.
, 1998, “
A Chemical Sensor Based on a Micromechanical Cantilever Array for the Identification of Gases and Vapors
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
66
, pp.
S61
S64
.
8.
Lochon
,
F.
,
Fadel
,
L.
,
Dufour
,
I.
,
Rebiere
,
D.
, and
Pistre
,
J.
, 2006, “
Silicon Made Resonant Microcantilever: Dependence of the Chemical Sensing Performances on the Sensitive Coating Thickness
,”
Mater. Sci. Eng., C
0928-4931,
26
(
2–3
), pp.
348
353
.
9.
Fadel
,
L.
,
Lochon
,
F.
,
Dufour
,
I.
, and
Francais
,
O.
, 2004, “
Chemical Sensing: Millimeter Size Resonant Microcantilever Performance
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
S23
S30
.
10.
Spletzer
,
M.
,
Wu
,
Q.
,
Raman
,
A.
,
Xu
,
X.
, and
Reifenberger
,
R.
, 2006, “
Ultrasensitive Mass Detection Using Mode Localization in Coupled Microcantilevers
,”
Appl. Phys. Lett.
0003-6951,
88
, p.
254102
.
11.
Burg
,
T. P.
,
Mirza
,
A. R.
,
Milovic
,
N.
,
Tsau
,
C. H.
,
Popescu
,
G. A.
,
Foster
,
J. S.
, and
Manalis
,
S. R.
, 2006, “
Vacuum-Packaged Suspended Microchannel Resonant Mass Sensor for Biomolecular Detection
,”
J. Microelectromech. Syst.
1057-7157,
15
(
6
), pp.
1466
1476
.
12.
Raiteri
,
R.
,
Grattarola
,
M.
,
Butt
,
H.
, and
Skladal
,
P.
, 2001, “
Micromechanical Cantilever-Based Biosensors
,”
Sens. Actuators B
0925-4005,
79
, pp.
115
126
.
13.
Ilic
,
B.
,
Czaplewski
,
D.
,
Zalalutdinov
,
M.
,
Craighead
,
H. G.
,
Neuzil
,
P.
,
Campagnolo
,
C.
, and
Batt
,
C.
, 2001, “
Single Cell Detection With Micromechanical Oscillators
,”
J. Vac. Sci. Technol. B
1071-1023,
19
, pp.
2825
2828
.
14.
Gupta
,
A.
,
Akin
,
D.
, and
Bashir
,
R.
, 2004, “
Single Virus Particle Mass Detection Using Microresonators With Nanoscale Thickness
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
1976
1978
.
15.
Lavrik
,
N. V.
,
Sepaniak
,
M. J.
, and
Datskos
,
P. G.
, 2004, “
Cantilever Transducers as a Platform for Chemical and Biology Sensors
,”
Rev. Sci. Instrum.
0034-6748,
75
, pp.
2229
2253
.
16.
Ono
,
T.
,
Li
,
X. X.
,
Miyashita
,
H.
, and
Esashi
,
M.
, 2003, “
Mass Sensing of Adsorbed Molecules in Sub-Picogram Sample With Ultrathin Silicon Resonator
,”
Rev. Sci. Instrum.
0034-6748,
74
, pp.
1240
1243
.
17.
Ekinci
,
K. L.
,
Huang
,
X. M. H.
, and
Roukes
,
M. L.
, 2004, “
Ultrasensitive Nanoelectromechanical Mass Detection
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4469
4471
.
18.
Forsen
,
E.
,
Abadal
,
G.
,
Ghatnekar-Nilsson
,
S.
,
Teva
,
J.
,
Verd
,
J.
,
Sandberg
,
R.
,
Svendsen
,
W.
,
Perez-Murano
,
F.
,
Esteve
,
J.
,
Figueras
,
E.
,
Campabadal
,
F.
,
Montelius
,
L.
,
Barniol
,
N.
, and
Boisen
,
A.
, 2005, “
Ultrasensitive Mass Sensor Fully Integrated With Complementary Metal Oxide Semiconductor Circuitry
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
043507
.
19.
Vancura
,
C.
,
Rüegg
,
M.
,
Li
,
Y.
,
Lange
,
D.
,
Hagleitner
,
C.
,
Brand
,
O.
,
Hierlemann
,
A.
, and
Baltes
,
H.
, 2003, “
Magnetically Actuated CMOS Resonant Cantilever Gas Sensor for Volatile Organic Compounds
,”
IEEE 12th International Conference on Solid State Sensors and Actuators
, Vol.
2
, pp.
1355
1358
.
20.
Ekinci
,
K. L.
,
Yang
,
Y. T.
, and
Roukes
,
M. L.
, 2004, “
Ultimate Limits to Inertial Mass Sensing Based Upon Nanoelectromechanical Systems
,”
J. Appl. Phys.
0021-8979,
95
, pp.
2682
2689
.
21.
Yang
,
J.
,
Ono
,
T.
, and
Esashi
,
M.
, 2000, “
Mechanical Behavior of Ultrathin Microcantilever
,”
Sens. Actuators, A
0924-4247,
82
, pp.
102
107
.
22.
Lavrik
,
N. V.
, and
Datskos
,
P. G.
, 2003, “
Femtogram Mass Detection Using Photothermally Actuated Nanomechanical Resonators
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
2697
2699
.
23.
Ilic
,
B.
,
Craighead
,
H. G.
,
Krylov
,
S.
,
Senaratne
,
W.
,
Ober
,
C.
, and
Neuzil
,
P.
, 2004, “
Attogram Detection Using Nanoelectromechanical Oscillators
,”
J. Appl. Phys.
0021-8979,
95
, pp.
3694
3703
.
24.
Jin
,
D.
,
Li
,
X.
,
Liu
,
J.
,
Zuo
,
G.
,
Wang
,
Y.
,
Liu
,
M.
, and
Yu
,
H.
, 2006, “
High-Mode Resonant Piezoresistive Cantilever Sensors for Tens-Femtogram Resoluble Mass Sensing in Air
,”
J. Micromech. Microeng.
0960-1317,
16
(
5
), pp.
1017
1023
.
25.
Tseytlin
,
Y. M.
, 2005, “
High Resonant Mass Sensor Evaluation: An Effective Method
,”
Rev. Sci. Instrum.
0034-6748,
76
, p.
115101
.
26.
Dohn
,
S.
,
Sandberg
,
R.
,
Svendsen
,
W.
, and
Boisen
,
A.
, 2005,
Enhanced Functionality of Cantilever Based Mass Sensors Using Higher Modes
,
American Institute of Physics
,
New York
, Vol.
86
.
27.
Dohn
,
S.
,
Sandberg
,
R.
,
Svendsen
,
W.
, and
Boisen
,
A.
, 2005, “
Enhanced Functionality of Cantilever Based Mass Sensors Using Higher Modes and Functionalized Particles
,”
International Conference on Solid State Sensors and Actuators and Microsystems, TRANSDUCERS '05
, Vol.
2
, pp.
636
639
.
28.
Lochon
,
F.
,
Dufour
,
I.
, and
Rebière
,
D.
, 2005, “
An Alternative Solution to Improve Sensitivity of Resonant Microcantilever Chemical Sensors: Comparison Between Using High-Order Modes and Reducing Dimensions
,”
Sens. Actuators B
0925-4005,
108
(
1–2
), pp.
979
985
.
29.
Chen
,
G.
,
Thundat
,
T.
,
Wachter
,
E.
, and
Warmack
,
R.
, 1995, “
Adsorption-Induced Surface Stress and Its Effects on Resonance Frequency of Microcantilevers
,”
J. Appl. Phys.
0021-8979,
77
, pp.
3618
3622
.
30.
Li
,
Y.
,
Ho
,
M.
,
Hung
,
S.
,
Chen
,
M.
, and
Lu
,
C.
, 2006, “
CMOS Micromachined Capacitive Cantilevers for Mass Sensing
,”
J. Micromech. Microeng.
0960-1317,
16
(
12
), pp.
2659
2665
.
31.
Voiculescu
,
I.
,
Zaghloul
,
M.
,
McGill
,
R.
,
Houser
,
E.
, and
Fedder
,
G.
, 2005, “
Electrostatically Actuated Resonant Microcantilever Beam in CMOS Technology for the Detection of Chemical Weapons
,”
IEEE Sens. J.
,
5
(
4
), pp.
641
647
. 0924-4247
32.
Zhang
,
W.
, and
Turner
,
K. L.
, 2005, “
Application of Parametric Resonance Amplification in a Single-Crystal Silicon Micro-Oscillator Based Mass Sensor
,”
Sens. Actuators, A
0924-4247,
122
, pp.
23
30
.
33.
Zhang
,
W.
,
Baskaran
,
R.
, and
Turner
,
K. L.
, 2002, “
Effect of Cubic Nonlinearity on Auto-Parametrically Amplified Resonant MEMS Mass Sensor
,”
Sens. Actuators, A
0924-4247,
102
(
1–2
), pp.
39
150
.
34.
Zhang
,
W.
, and
Turner
,
K. L.
, 2004, “
A Mass Sensor Based on Parametric Resonance
,”
A Solid State Sensor, Actuator and Microsystems Workshop
, Hilton Head Island, SC, p.
49
.
35.
Vyas
,
A.
,
Bajaj
,
A. K.
, and
Peroulis
,
D.
, 2007, “
Nonlinear Resonator With Interacting Flexural-Torsional Modes for Mass Sensing
,”
Proceedings of the 21st Biennial Conference on Mechanical Vibration and Noise (VIB)
, Las Vegas, NV, Paper No. DETC2007-35117.
36.
Mehta
,
A.
,
Cherian
,
S.
,
Hedden
,
D.
, and
Thundat
,
T.
, 2001, “
Manipulation and Controlled Amplification of Brownian Motion of Microcantilever Sensors
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
1637
1639
.
37.
Senturia
,
S. D.
, 2001,
Microsystem Design
,
Kluwer Academic
,
Boston
.
38.
Rebeiz
,
G. M.
, 2003,
RF MEMS: Theory, Design, and Technology
,
Wiley
,
New York
.
39.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
, 2007, “
Dynamic Pull-In Phenomenon in MEMS Resonators
,”
Nonlinear Dyn.
0924-090X,
48
, pp.
153
163
.
40.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
, 2005, “
Dynamics of MEMS Resonators Under Superharmonic and Subharmonic Excitations
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
1840
1847
.
41.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2003, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
1057-7157,
12
, pp.
672
680
.
42.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
, 2005, “
Reduced-Order Models for MEMS Applications
,”
Nonlinear Dyn.
0924-090X,
41
, pp.
211
236
.
44.
Inman
,
D. J.
, 2001,
Engineering Vibrations
,
Pearson
,
Upper Saddle River, NJ
.
45.
Meirovitch
,
L.
, 2001,
Fundamentals of Vibrations
,
McGraw-Hill
,
Boston
.
46.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics
,
Wiley
,
New York
.
47.
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
, 2001,
Nonlinear Dynamics and Chaos
,
Wiley
,
New York
.
48.
Lenci
,
S.
, and
Rega
,
G.
, 2006, “
Control of Pull-In Dynamics in a Nonlinear Thermoelastic Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
390
401
.
49.
Lim
,
S.
,
Raorane
,
D.
,
Satyanarayana
,
S.
, and
Majumdar
,
A.
, 2006, “
Nano-Chemo-Mechanical Sensor Array Platform for High-Throughput Chemical Analysis
,”
Sens. Actuators B
0925-4005,
119
, pp.
466
474
.
50.
Nayfeh
,
A. H.
, 1981,
Introduction to Perturbation Techniques
,
Wiley
,
New York
.
51.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, 2003, “
A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation
,”
Nonlinear Dyn.
0924-090X,
31
, pp.
91
117
.
53.
Blech
,
J. J.
, 1983, “
On Isothermal Squeeze Films
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
615
620
.
You do not currently have access to this content.