Fractional calculus should be applied to various dynamical systems in order to be validated in practice. On this line of taught, the fractional extension of the classical dynamics is introduced. The fractional Hamiltonian on the extended phase space is analyzed and the corresponding generalized Poisson’s brackets are constructed.

1.
Oldham
,
K. B.
, and
Spanier
,
J.
, 1974,
The Fractional Calculus
,
Academic
,
New York
.
2.
Miller
,
K. S.
, and
Ross
,
B.
, 1993,
An Introduction to the Fractional Integrals and Derivatives—Theory and Application
,
Wiley
,
New York
.
3.
Hilfer
,
R.
, 2000,
Application of Fractional Calculus in Physics
,
World Scientific
,
Singapore
.
4.
Zaslavsky
,
G. M.
, 2005,
Hamiltonian Chaos and Fractional Dynamics
,
Oxford University Press
,
Oxford
.
5.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
, 1993.
Fractional Integrals and Derivatives—Theory and Applications
,
Gordon and Breach
,
Linghorne, PA
.
6.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
San Diego, CA
.
7.
Kilbas
,
A. A.
,
Srivastava
,
H. H.
, and
Trujillo
,
J. J.
, 2006,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam
.
8.
Magin
,
R. L.
, 2006,
Fractional Calculus in Bioengineering
,
Begell
,
Connecticut
.
9.
West
,
B. J.
,
Bologna
,
M.
, and
Grigolini
,
P.
, 2003,
Physics of Fractal Operators
,
Springer
,
New York
.
10.
Heymans
,
N.
, and
Podlubny
,
I.
, 2006, “
Physical Interpretation of Initial Conditions for Fractional Differential Equations With Riemann–Liouville Fractional Derivatives
,”
Rheol. Acta
0035-4511,
45
, pp.
765
771
.
11.
Jesus
,
I. S.
, and
Machado
,
J. A. T.
, 2008, “
Fractional Control of Heat Diffusion Systems
,”
Nonlinear Dyn.
0924-090X,
54
(
3
), pp.
263
282
.
12.
Machado
,
J. A. T.
, and
Galhano
,
M. S. A.
, 2008, “
Statistical Fractional Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
2
), p.
021201
.
13.
Mainardi
,
F.
,
Luchko
,
Y.
, and
Pagnini
,
G.
, 2001, “
The Fundamental Solution of the Space-Time Fractional Diffusion Equation
,”
Fractional Calculus Appl. Anal.
1311-0454,
4
(
2
), pp.
153
192
.
14.
Scalas
,
E.
,
Gorenflo
,
R.
, and
Mainardi
,
F.
, 2004, “
Uncoupled Continuous-Time Random Walks: Solution and Limiting Behavior of the Master Equation
,”
Phys. Rev. E
1063-651X,
69
, p.
011107
.
15.
Agrawal
,
O. P.
, 2002, “
Formulation of Euler–Lagrange Equations for Fractional Variational Problems
,”
J. Math. Anal. Appl.
0022-247X,
272
, pp.
368
379
.
16.
Chen
,
Y. Q.
,
Vinagre
,
B. M.
, and
Podlubny
,
I.
, 2004, “
Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—An Expository Review
,”
Nonlinear Dyn.
0924-090X,
38
(
1–4
), pp.
155
170
.
17.
Tarasov
,
V. E.
,
Zaslavsky
,
G. M.
, 2006, “
Nonholonomic Constraints With Fractional Derivatives
,”
J. Phys. A
0305-4470,
39
(
31
), pp.
9797
9815
.
18.
Korabel
,
N.
,
Zaslavsky
,
G. M.
, and
Tarasov
,
V. E.
, 2007, “
Coupled Oscillators With Power-Law Interaction and Their Fractional Dynamics Analogues
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
(
8
), pp.
1405
1417
.
19.
Agrawal
,
O. P.
, and
Baleanu
,
D. A.
, 2007, “
Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems
,”
J. Vib. Control
1077-5463,
13
(
9–10
), pp.
1269
1281
.
20.
Baleanu
,
D.
, 2008, “
Fractional Constrained Systems and Caputo Derivatives
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
2
), p.
021102
.
21.
Momani
,
S.
, 2006, “
A Numerical Scheme for the Solution of Multi-Order Fractional Differential Equations
,”
Appl. Math. Comput.
0096-3003,
182
, pp.
761
770
.
22.
Kolwankar
,
K. M.
, and
Gangal
,
A. D.
, 1998, “
Local Fractional Fokker–Planck Equation
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
214
217
.
23.
Engheta
,
N.
, 1996, “
Electrostaic Fractional Image Methods for Perfectly Conducting Wedges and Cones
,”
IEEE Trans. Antennas Propag.
0018-926X,
44
, pp.
1565
1574
.
24.
Tarasov
,
V. E.
, 2008, “
Fractional Vector Calculus and Fractional Maxwell’s Equations
,”
Ann. Phys.
0003-3804,
323
(
11
), pp.
2756
2778
.
25.
Baleanu
,
D.
,
Golmankhaneh
,
A. K.
, and
Golmankhaneh
,
A. K.
, 2008, “
Fractional Nambu Mechanics
,”
Int. J. Theor. Phys.
0020-7748,
48
(
4
), pp.
1044
1052
.
26.
Solomon
,
T. H.
,
Weeks
,
E. R.
, and
Swinney
,
H. L.
, 1993, “
Observation of Anomalous Diffusion and Levy Flights in a Two-Dimensional Rotating Flow
,”
Phys. Rev. Lett.
0031-9007,
71
(
24
), pp.
3975
3978
.
27.
Fogleman
,
M. A.
,
Fawcett
,
M. J.
, and
Solomon
,
T. H.
, 2001, “
Lagrangian Chaos and Correlated Lévy Flights in a Non-Beltrami Flow: Transient Versus Long-Term Transport
,”
Phys. Rev. E
1063-651X,
63
, p.
020101
.
28.
Riewe
,
F.
, 1996, “
Nonconservative Lagrangian and Hamiltonian Mechanics
,”
Phys. Rev. E
1063-651X,
53
, pp.
1890
1899
.
29.
Riewe
,
F.
, 1997, “
Mechanics With Fractional Derivatives
,”
Phys. Rev. E
1063-651X,
55
, pp.
3581
3592
.
30.
Klimek
,
M.
, 2001, “
Fractional Sequential Mechanics—Models With Symmetric Fractional Derivative
,”
Czech. J. Phys.
0011-4626,
51
, pp.
1348
1354
.
31.
Klimek
,
M.
, 2002, “
Lagrangean and Hamiltonian Fractional Sequential Mechanics
,”
Czech. J. Phys.
0011-4626,
52
, pp.
1247
1253
.
32.
Agrawal
,
O. P.
, 2007, “
Fractional Variational Calculus and the Transversality Conditions
,”
J. Phys. A: Math. Theor.
1751-8113,
39
, pp.
10375
10384
.
33.
Agrawal
,
O. P.
, 2007, “
Generalized Euler–Lagrange Equations and Transversality Conditions for FVPs in Terms of the Caputo Derivative
,”
J. Vib. Control
1077-5463,
13
(
9–10
), pp.
1217
1237
.
34.
Baleanu
,
D.
, and
Agrawal
,
O. P.
, 2006, “
Fractional Hamilton Formalism Within Caputo Derivative
,”
Czech. J. Phys.
0011-4626,
56
, pp.
1087
1092
.
35.
Rabei
,
E. M.
,
Nawafleh
,
K. I.
,
Hijjawi
,
R. S.
,
Muslih
,
S. I.
, and
Baleanu
,
D.
, 2007, “
The Hamilton Formalism With Fractional Derivatives
,”
J. Math. Anal. Appl.
0022-247X,
327
, pp.
891
897
.
36.
Baleanu
,
D.
, and
Muslih
,
S. I.
, 2005, “
Lagrangian Formulation of Classical Fields Within Riemann–Liouville Fractional Derivatives
,”
Phys. Scr.
0031-8949,
72
(
2–3
), pp.
119
121
.
37.
Muslih
,
S. I.
, and
Baleanu
,
D.
, 2005, “
Hamiltonian Formulation of Systems With Linear Velocities Within Riemann–Liouville Fractional Derivatives
,”
J. Math. Anal. Appl.
0022-247X,
304
(
2
), pp.
599
606
.
38.
Baleanu
,
D.
, and
Avkar
,
T.
, 2004, “
Lgrangians With Linear Velocities Within Riemann–Liouville Fractional Derivatives
,”
Nuovo Cimento B
0369-3554,
119
, pp.
73
79
.
39.
Baleanu
,
D.
,
Maraaba
,
T.
, and
Jarad
,
F.
, 2008, “
Fractional Principles With Delay
,”
J. Phys. A: Math. Theor.
1751-8113,
41
(
31
), p.
315403
.
40.
Baleanu
,
D.
,
Muslih
,
S. I.
,
Rabei
,
E.
,
Golmankhaneh
,
A. K.
, and
Golmankhaneh
,
A. K.
, 2009, “
Fractional Mechanics on the Extended Phase Space
,” Paper No. DETC2009-86586.
41.
Nasiri
,
S. Y.
,
Sobouti
,
Y.
, and
Taati
,
F.
, 2006, “
Phase Space Quantum Mechanics-Direct
,”
J. Math. Phys.
0022-2488,
47
, p.
092106
.
You do not currently have access to this content.