A constrained dynamic optimization problem of a fractional order system with fixed final time has been considered here. This paper presents a general formulation and solution scheme of a class of fractional optimal control problems. The dynamic constraint is described by a fractional differential equation of order less than 1, and the fractional derivative is defined in terms of Riemann–Liouville. The performance index includes the terminal cost function in addition to the integral cost function. A general transversility condition in addition to the optimal conditions has been obtained using the Hamiltonian approach. Both the specified and unspecified final state cases have been considered. A numerical technique using the Grünwald–Letnikov definition is used to solve the resulting equations obtained from the formulation. Numerical examples are provided to show the effectiveness of the formulation and solution scheme. It has been observed that the numerical solutions approach the analytical solutions as the order of the fractional derivatives approach 1.

1.
Sage
,
A. P.
, and
White
,
C. C.
, III
, 1977,
Optimum Systems Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Agrawal
,
O. P.
, 2008, “
Fractional Optimal Control of a Distributed System Using Eigenfunctions
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
2
), p.
021204
.
3.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
New York
.
4.
Caputo
,
M.
, 1969,
Elasticita e dissipacione
,
Zanichelli
,
Bologna
.
5.
Nonnenmacher
,
T. F.
, and
Glöckle
,
W. G.
, 1991, “
A Fractional Model for Mechanical Stress Relaxation
,”
Philos. Mag. Lett.
0950-0839,
64
(
2
), pp.
89
93
.
6.
Friedrich
,
C.
, 1991, “
Relaxation and Retardation Functions of the Maxwell Model With Fractional Derivatives
,”
Rheol. Acta
0035-4511,
30
, pp.
151
158
.
7.
Zamani
,
M.
,
Karimi-Ghartemani
,
M.
, and
Sadati
,
N.
, 2007, “
FOPID Controller Design for Robust Performance Using Particle Swarm Optimization
,”
Fractional Calculus Appl. Anal.
1311-0454,
10
(
2
), pp.
169
188
.
8.
Riewe
,
F.
, 1996, “
Nonconservative Lagrangian and Hamiltonian Mechanics
,”
Phys. Rev. E
1063-651X,
53
, pp.
1890
1899
.
9.
Riewe
,
F.
, 1997, “
Mechanics With Fractional Derivatives
,”
Phys. Rev. E
1063-651X,
55
, pp.
3581
3592
.
10.
Klimek
,
M.
, 2002, “
Stationary Conservation Laws for Fractional Differential Equations With Variable Coefficients
,”
J. Phys. A
0305-4470,
35
, pp.
6675
6693
.
11.
Dreisigmeyer
,
D. W.
, and
Young
,
P. M.
, 2003, “
Nonconservative Lagrangian Mechanics: A Generalized Function Approach
,”
J. Phys. A
0305-4470,
36
, pp.
8297
8310
.
12.
Tarasov
,
V. E.
, and
Zaslavsky
,
G. M.
, 2005, “
Fractional Ginzburg–Landau Equation for Fractal Media
,”
Physica A
0378-4371,
354
, pp.
249
261
.
13.
Rabei
,
E. M.
,
Ajlouni
,
A. -W.
, and
Ghassib
,
H. B.
, 2006, “
Quantization of Brownian Motion
,”
Int. J. Theor. Phys.
0020-7748,
45
(
9
), pp.
1613
1623
.
14.
Baleanu
,
D.
, and
Avkar
,
T.
, 2004, “
Lagrangians With Linear Velocities Within Riemann–Liouville Fractional Derivatives
,”
Nuovo Cimento Soc. Ital. Fis., B
0369-4100,
119
, pp.
73
79
.
15.
Muslih
,
S. I.
, and
Baleanu
,
D.
, 2005, “
Hamiltonian Formulation of Systems With Linear Velocities Within Riemann–Liouville Fractional Derivatives
,”
J. Math. Anal. Appl.
0022-247X,
304
, pp.
599
606
.
16.
Muslih
,
S. I.
, and
Baleanu
,
D.
, 2005, “
Formulation of Hamiltonian Equations for Fractional Variational Problems
,”
Czech. J. Phys.
0011-4626,
55
, pp.
633
642
.
17.
Baleanu
,
D.
, 2009, “
Fractional Variational Principles in Action
,”
Phys. Scr.
0031-8949,
T136
, p.
014006
.
18.
Baleanu
,
D.
, 2008, “
Fractional Constrained Systems and Caputo Derivatives
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
2
), p.
021102
.
19.
Agrawal
,
O. P.
, 2002, “
Formulation of Euler–Lagrange Equations for Fractional Variational Problems
,”
J. Math. Anal. Appl.
0022-247X,
272
, pp.
368
379
.
20.
Agrawal
,
O. P.
, 2004, “
A General Formulation and Solution Scheme for Fractional Optimal Control Problems
,”
Nonlinear Dyn.
0924-090X,
38
, pp.
323
337
.
21.
Agrawal
,
O. P.
, 2007, “
A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems
,”
J. Vib. Control
1077-5463,
13
, pp.
1269
1281
.
22.
Baleanu
,
D.
,
Defterli
,
O.
, and
Agrawal
,
O. P.
, 2009, “
A Central Difference Numerical Scheme for Fractional Optimal Control Problems
,”
J. Vib. Control
1077-5463,
15
, pp.
583
597
.
23.
Biswas
,
R. K.
, and
Sen
,
S.
, 2009, “
Numerical Method for Solving Fractional Optimal Control Problems
,”
ASME Proceedings of IDETC/CIE 2009
, ASME, CA, Paper No. DETC2009-87008.
24.
Tricaud
,
C.
, and
Chen
,
Y. Q.
, 2008, “
Solving Fractional Order Optimal Control Problems in RIOTS_95—A General-Purpose Optimal Control Problems Solver
,”
Proceedings of the 2008 Conference on Fractional Differentiation and Its Applications (FDA 08)
, Ankara, Turkey.
25.
Tricaud
,
C.
, and
Chen
,
Y. Q.
, 2009, “
Solution of Fractional Order Optimal Control Problems Using SVD-Based Rational Approximations
,”
Proceedings of the 2009 American Control Conference (ACC 09)
, St. Louis, MO, pp.
1430
1435
.
26.
Tricaud
,
C.
, and
Chen
,
Y. Q.
, 2009, “
Time-Optimal Control of Fractional Dynamic Systems
,”
Proceedings of the 48th IEEE Conference on Decision and Control (CDC09)
, Shanghai, P.R. China.
27.
Tricaud
,
C.
, and
Chen
,
Y. Q.
, 2010, “
Time-Optimal Control of Systems With Fractional Dynamics
,”
International Journal of Differential Equations
,
2010
, p.
461048
.
28.
Atanacković
,
T. M.
,
Konjik
,
S.
, and
Pilipovic
,
S.
, 2008, “
Variational Problems With Fractional Derivatives: Euler–Lagrange Equations
,”
J. Phys. A: Math. Theor.
1751-8113,
41
, p.
095201
.
You do not currently have access to this content.