Based on the classic Lorenz system, this paper studies the problem of bivariate module-phase synchronizations in a fractional-order Lorenz system, bivariate module-phase synchronizations in a fractional-order spatiotemporal coupled Lorenz system, and malposed module-phase synchronization in a fractional-order spatiotemporal coupled Lorenz system. It is the first time, to our knowledge, that module-phase synchronization in fractional-order high-dimensional systems is applied. According to the fractional calculus techniques and spatiotemporal theory, we design controllers and achieve synchronizations both in module space and phase space at the same time. In the simulation, we discuss the bivariate module-phase synchronization and malposed module-phase synchronization. The numerical simulation results demonstrate the validity of controllers.

References

1.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
, pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
2.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
, pp.
1196
1199
.10.1103/PhysRevLett.64.1196
3.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic System
,”
Phys. Rev. Lett.
,
64
, pp.
821
824
.10.1103/PhysRevLett.64.821
4.
Rosenblum
,
M. G.
,
Pikovsky
,
A. S.
, and
Kurths
,
J.
,
1997
, “
From Phase to Lag Synchronization in Coupled Chaotic Oscillators
,”
Phys. Rev. Lett.
,
78
, pp.
4193
4196
.10.1103/PhysRevLett.78.4193
5.
Ho
,
M. C.
,
Hung
,
Y. C.
, and
Chou
,
C. H.
,
2002
, “
Phase and Anti-Phase Synchronization of Two Chaotic Systems by Using Active Control
,”
Phys. Lett. A
,
296
, pp.
43
48
.10.1016/S0375-9601(02)00074-9
6.
Shi
,
X. R.
, and
Wang
,
Z. L.
,
2010
, “
Robust Chaos Synchronization of Four-Dimensional Energy Resource System via Adaptive Feedback Control
,”
Nonlinear Dyn.
,
60
, pp.
631
637
.10.1007/s11071-009-9620-y
7.
Ray
,
A.
,
RoyChowdhury
,
A.
, and
Mukherjee
,
I.
,
2012
, “
Nonlinear Control of Hyperchaotic System, Lie Derivative, and State Space Linearization
,”
ASME J. Comput. Nonlinear Dyn.
,
7
,
p. 031002
.10.1115/1.4005926
8.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic
,
New York
.
9.
Hilfer
,
R.
,
2001
,
Applications of Fractional Calculus in Physics
,
World Scientific
,
New Jersey
.
10.
Bagley
,
R. L.
, and
Calico
,
R. A.
,
1991
, “
Fractional Order State-Equations for the Control of Viscoelastically Damped Structures
,”
J. Guid. Control Dyn.
,
14
, pp.
304
311
.10.2514/3.20641
11.
Koeller
,
R. C.
,
1984
, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
, pp.
299
307
.10.1115/1.3167616
12.
Koeller
,
R. C.
,
1986
, “
Polynomial Operatorsm Stieltjes Convolution, and Fractional Calculus in Hereditary Mechanics
,”
Acta Mech.
,
58
, pp.
251
264
.10.1007/BF01176603
13.
Heaviside
,
O.
,
1971
,
Electromagnetic Theory
,
Chelsea
,
New York
.
14.
Grigorenko
,
I.
, and
Grigorenko
,
E.
,
2003
, “
Chaotic Dynamics of the Fractional Lorenz System
,”
Phys. Rev. Lett.
,
91
, p.
034101
.10.1103/PhysRevLett.91.034101
15.
Hartley
,
T. T.
,
Lorenzo
,
C. F.
, and
Qammer
,
H. K.
,
1995
, “
Chaos in a Fractional Order Chua's System
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
42
, pp.
485
490
.10.1109/81.404062
16.
Li
,
C. G.
, and
Chen
,
G. R.
,
2004
, “
Chaos in the Fractional-Order Chen System and its Control
,”
Chaos, Solitons Fractals
,
22
, pp.
549
554
.10.1016/j.chaos.2004.02.035
17.
Li
,
C. P.
, and
Peng
,
G. J.
,
2004
, “
Chaos in Chen's System With a Fractional Order
,”
Chaos, Solitons Fractals
,
22
, pp.
443
450
.10.1016/j.chaos.2004.02.013
18.
Deng
,
W. H.
, and
Li
,
C. P.
,
2005
, “
Chaos Synchronization of the Fractional Lü System,
Physica A
,
353
, pp.
61
72
.10.1016/j.physa.2005.01.021
19.
Oumlumlzdemir
,
N.
, and
Idotskender
, B. B.,
2010
, “
Fractional Order Control of Fractional Diffusion Systems Subject to Input Hysteresis
,”
ASME J. Comput. Nonlinear Dyn.
,
5
, p.
021002
.10.1115/1.4000791
20.
Chen
,
L. P.
,
Chai
,
Y.
, and
Wu
,
R. C.
,
2011
, “
Linear Matrix Inequality Criteria for Robust Synchronization of Uncertain Fractional-Order Chaotic Systems
,”
Chaos
,
21
, p.
043107
.10.1063/1.3650237
21.
Mohammad
,
P. A.
,
2012
, “
Robust Finite-Time Stabilization of Fractional-Order Chaotic Systems Based on Fractional Lyapunov Stability Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
7
, p.
021010
.10.1115/1.4005323
22.
Lin
,
T. C.
,
Kuo
,
C. H.
,
Lee
,
T. Y.
, and
Balas
,
V. E.
,
2012
, “Adaptive Fuzzy H∞ Tracking Design of SISO Uncertain Nonlinear Fractional Order Time-Delay Systems,”
Nonlinear Dyn.
,
69
, pp.
1639
1650
.10.1007/s11071-012-0375-5
23.
Zhang
,
R. X.
, and
Yang
,
S. P.
,
2012
, “
Robust Chaos Synchronization of Fractional-Order Chaotic Systems with Unknown Parameters and Uncertain Perturbations
,”
Nonlinear Dyn.
,
69
, pp.
983
992
.10.1007/s11071-011-0320-z
24.
Mires
,
K. A.
, and
Sprott
,
J. C.
,
1999
, “
Controlling Chaos in a High Dimensional System With Periodic Parametric Perturbations
,”
Phys. Lett. A
,
254
, pp.
275
278
.10.1016/S0375-9601(99)00068-7
25.
Codreanu
,
S.
,
2003
, “
Synchronization of Spatiotemporal Nonlinear Dynamical Systems by an Active Control
,”
Chaos, Solitons Fractals
,
15
, pp.
507
510
.10.1016/S0960-0779(02)00128-5
26.
Newell
,
T. C.
,
Alsing
,
P. M.
, and
Gavrielids
,
A.
,
1995
, “
Synchronization of Chaotic Resonators Based on Control Theory
,”
Phys. Rev. E
,
51
, pp.
2963
3973
.10.1103/PhysRevE.51.2963
27.
Wang
,
X. Y.
, and
Zhang
,
H.
,
2012
, “
Chaotic Synchronization of Fractional-Order Spatiotemporal Coupled Lorenz System
,”
Int. J. Mod. Phys. C
,
23
, p.
1250067
.10.1142/S0129183112500672
28.
Caputo
,
M.
,
1967
, “
Linear Models of Dissipation Whose Q is Almost Frequency Independent
,”
Geophys. J. R. Astron. Soc.
,
13
, pp.
529
539
.10.1111/j.1365-246X.1967.tb02303.x
29.
Wolf
,
A.
,
Swift
,
J. B.
, and
Swinney
,
H. L.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
,
16
, pp.
285
317
.10.1016/0167-2789(85)90011-9
30.
Song
,
J. M.
, and
Wang
,
X. Y.
,
2009
, “
Synchronization of the Fractional Order Hyperchaos Lorenz Systems With Activation Feedback Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
3351
3357
.10.1016/j.cnsns.2009.01.010
31.
Nian
,
F. Z.
,
Wang
,
X. Y.
,
Niu
,
Y. J.
, and
Lin
,
D.
,
2010
, “
Module-Phase Synchronization in Complex Dynamic System
,”
Appl. Math. Comput.
,
217
, pp.
2481
2489
.10.1016/j.amc.2010.07.059
32.
Diethelm
,
K.
, and
Ford
,
N. J.
,
2002
, “
Analysis of Fractional Differential Equations
,”
J. Math. Anal. Appl.
,
265
, pp.
229
248
.10.1006/jmaa.2000.7194
You do not currently have access to this content.