This work presents a flexible multibody system model for the inside turning of thin-walled cylinders. The model accounts for the varying input and output behavior of the workpiece due to workpiece rotation and tool feed, as well as the changing workpiece dynamics due to material removal. A parametric approach is used to incorporate the effect of material removal. Hereby, a number of systems are precalculated for different machined states that are then interpolated to obtain the model for the desired machined state. As different systems typically have different vectors of degrees of freedom, a preprocessing step must be added to guarantee compatibility and thus a meaningful interpolation. In this work, two ways of obtaining a parametric model are presented that lead to similar results. The parametric model is then used to analyze stability of an inside turning operation. By taking into account the varying workpiece dynamics, an improved tool feed is suggested that would allow to greatly reduce the cycle time.

References

1.
Tobias
,
S. A.
,
1965
,
Machine-Tool Vibration
,
Blackie and Sons
,
London, UK
.
2.
Bathe
,
K.-J.
,
1996
,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
3.
Shabana
,
A. A.
,
1998
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge, England
.
4.
Heisel
,
U.
, and
Kang
,
C.
,
2010
, “
Model-Based Form Error Compensation in the Turning of Thin-Walled Cylindrical Parts
,”
Prod. Eng. Res. Develop.
,
5
(
2
), pp.
151
158
.10.1007/s11740-010-0288-4
5.
Fischer
,
A.
, and
Eberhard
,
P.
,
2011
, “
Simulation-Based Stability Analysis of a Thin-Walled Cylinder During Turning With Improvements Using an Adaptronic Turning Chisel
,”
Arch. Mech. Eng.
,
58
(
4
), pp.
367
391
.
6.
Olivier Brüls
,
P.
, and
Duysinx
,
J.-C. G.
,
2007
, “
The Global Modal Parameterization for Nonlinear Methods in Engineering
,”
Int. J. Numer. Methods Eng.
,
69
(
5
), pp.
948
977
.10.1002/nme.1795
7.
Tamarozzi
,
T.
,
Ziegler
,
P.
,
Eberhard
,
P.
, and
Desmet
,
W.
,
2013
, “
Static Modes Switching in Gear Contact Simulation
Mech. Mach. Theory
,
63
, pp.
89
106
.10.1016/j.mechmachtheory.2013.01.006
8.
Ambrósio
,
J. A. C.
,
2009
, “
Advanced Design of Mechanical Systems: From Analysis to Optimization
,”
Distributed Deformation: A Finite Element Method
,
Springer
,
Berlin
, pp.
351
374
.
9.
Wallrapp
,
O.
,
1993
, “
Standard Input Data of Flexible Bodies for Multibody System Codes
,”
German Aerospace Establishment
,
Institute for Robotics and System Dynamics
,
Oberpfaffenhofen
, Report No. IB 515-93-04.
10.
Fehr
,
J.
,
2011
,“
Automated and Error-Controlled Model Reduction in Elastic Multibody Systems
,”
Ph.D. thesis
,
Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, Stuttgart, Germany
.
11.
Lehner
,
M.
,
2007
, “
Modellreduktion in Elastischen Mehrkörpersystemen
,”
Ph.D. thesis
,
Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, Germany
(in German).
12.
Antoulas
,
A.
,
2005
,
Approximation of Large-Scale Dynamical Systems
,
SIAM
,
Philadelphia, PA
.
13.
Kienzle
,
O.
,
1952
, “
Die Bestimmung von Kräften und Leistungen an Spanenden Werkzeugen und Werkzeugmaschinen (in German)
,”
Zeitschrift des Vereines Deutscher Ingenieure
,
94
, pp.
299
305
.
14.
Paucksch
,
E.
,
Holsten
,
S.
,
Linß
,
M.
, and
Tikal
,
F.
,
2008
,
Zerspantechnik (in German)
,
Vieweg+Teubner
,
Wiesbaden
.
15.
König
,
W.
,
Essel
,
K.
, and
Witte
,
L.
,
1981
,
Specific Cutting Force Data for Metal-Cutting
,
Verlag-Stahleisen
,
Düsseldorf
.
16.
Ratchev
,
S.
,
Liu
,
S.
,
Huang
,
W.
, and
Becker
,
A. A.
,
2007
, “
Machining Simulation and System Integration Combining FE Analysis and Cutting Mechanics Modelling
,”
Int. J. Adv. Manuf. Technol.
,
35
(
1–2
), pp.
55
65
.10.1007/s00170-006-0700-6
17.
Mañé
,
I.
,
Gagnol
,
V.
,
Bouzgarroua
,
B. C.
, and
Raya
,
P.
,
2008
, “
Stability-Based Spindle Speed Control During Flexible Workpiece High-Speed Milling
,”
Int. J. Mach. Tools Manuf.
,
48
(
2
), pp.
184
194
.10.1016/j.ijmachtools.2007.08.018
18.
Panzer
,
H.
,
Mohring
,
J.
,
Eid
,
R.
, and
Lohmann
,
B.
,
2010
, “
Parametric Model Order Reduction by Matrix Interpolation
,”
Automatisierungstechnik
,
58
(
8
), pp.
475
484
.10.1524/auto.2010.0863
19.
Merrit
,
H. E.
,
1965
, “
Theory of Self-Excited Machine-Tool Chatter
,”
ASME J. Eng. Industry
,
87
(4), pp.
447
454
.10.1115/1.3670861
20.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling – Part I: General Formulation
,”
J. Dyn. Sys., Meas., Control
,
120
(1), pp.
22
30
.10.1115/1.2801317
21.
Henninger
,
C.
, and
Eberhard
,
P.
,
2009
, “
Computation of Stability Bounds for Milling Processes With Parallel Kinematic Machine Tools
,”
Inst. Eng. Comput. Mech.
,
223
(
1
), pp.
117
129
. 10.1243/09596518JSCE603
22.
Hale
,
J. K.
, and
Lunel
,
S.M.V.
,
1993
,
Introduction to Functional Differential Equations
,
Springer
,
New York
.
23.
Insperger
,
T.
, and
Stépán
,
G.
,
2012
,
Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications
,
Springer
,
New York
.
24.
Henninger
,
C.
,
2009
, “
Methoden zur Simulationsbasierten Analyse der Dynamischen Stabilität von Fräsprozessen (in German)
,”
Ph.D. thesis
,
Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart
.
25.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
, pp.
503
518
.10.1002/nme.505
26.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
, pp.
117
141
.10.1002/nme.1061
You do not currently have access to this content.