Skip Nav Destination
Issues
September 2024
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Additional Natural Frequency of the Beam Carrying a Spring-Mass System: Lost and Found
J. Comput. Nonlinear Dynam. September 2024, 19(9): 091001.
doi: https://doi.org/10.1115/1.4065781
Topics:
Mode shapes
,
Springs
Full-Dimensional Proportional-Derivative Control Technique for Turing Pattern and Bifurcation of Delayed Reaction-Diffusion Bidirectional Ring Neural Networks
J. Comput. Nonlinear Dynam. September 2024, 19(9): 091002.
doi: https://doi.org/10.1115/1.4065881
Topics:
Artificial neural networks
,
Bifurcation
,
Control equipment
,
Delays
,
Diffusion (Physics)
,
Stability
Haar Wavelet Approach for the Mathematical Model on Hepatitis B Virus
J. Comput. Nonlinear Dynam. September 2024, 19(9): 091003.
doi: https://doi.org/10.1115/1.4065843
Topics:
Wavelets
,
Differential equations
Nonlinear Static and Dynamic Responses of a Floating Rod Pendulum
J. Comput. Nonlinear Dynam. September 2024, 19(9): 091004.
doi: https://doi.org/10.1115/1.4065899
Topics:
Dynamic response
,
Equilibrium (Physics)
,
Frequency response
,
Pendulums
,
Bifurcation
,
Density
,
Hydrostatics
,
Water
,
Equations of motion
A Posteriori Error Analysis of Defect Correction Method for Singular Perturbation Problems With Discontinuous Coefficient and Point Source
J. Comput. Nonlinear Dynam. September 2024, 19(9): 091005.
doi: https://doi.org/10.1115/1.4065900
Topics:
Error analysis
,
Errors
,
Stability
,
Numerical analysis
,
Boundary layers
An Improved Wiener Path Integral Approach for Stochastic Response Estimation of Nonlinear Systems Under Non-White Excitation
J. Comput. Nonlinear Dynam. September 2024, 19(9): 091006.
doi: https://doi.org/10.1115/1.4065959
Topics:
Density
,
Excitation
,
Nonlinear systems
,
Path integrals
,
Probability
,
Fluctuations (Physics)
Technical Brief
Harmonic Response of a Highly Flexible Thin Long Cantilever Beam: A Semi-Analytical Approach in Time-Domain With ANCF Modeling and Experimental Validation
J. Comput. Nonlinear Dynam. September 2024, 19(9): 094501.
doi: https://doi.org/10.1115/1.4065880
Topics:
Cantilever beams
,
Damping
,
Gravity (Force)
,
Modeling
,
Deflection
,
Excitation
,
Variational techniques
,
Finite element methods
,
Computation
Email alerts
RSS Feeds
A new triangular thin shell element based on the absolute nodal coordinate formulation for complex surfaces
J. Comput. Nonlinear Dynam
Data-Driven Modeling of Tire-Soil Interaction with POD-Based Model Order Reduction
J. Comput. Nonlinear Dynam
Application of Laminate Theory to Plate Elements Based on Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam (November 2024)