Multiple-sensor integration of vision and touch probe sensors has been shown to be a feasible approach for rapid and high-precision coordinate acquisition [Shen, T. S., Huang, J., and Meng, C. H., 2000, “Multiple-sensor integration for rapid and high-precision coordinate metrology,” IEEE/ASME Trans. Mechatron. 5, pp. 110–121]. However, the automation of coordinate measurements is still hindered by unknown surface areas that cannot be digitized using the vision system due to occlusions. It is identified that the estimation and reasoning of unknown surface areas, and automatic sensor planning using multiple sensors are two key issues. In order to advance multiple-sensor integration technologies toward a fully automatic and agile coordinate metrology, information integration algorithms for estimating and reasoning unknown surface areas, and an automatic multiple-sensor planning environment are developed in this paper. Experimental and simulation results are also demonstrated.

1.
Shen
,
T. S.
,
Huang
,
J.
, and
Menq
,
C. H.
,
2000
, “
Multiple-Sensor Integration for Rapid and High-Precision Coordinate Metrology
,”
IEEE/ASME Trans. Mechatron.
,
5
, No.
2
, pp.
110
121
.
2.
Chen
,
L. C.
, and
Lin
,
G. C.
,
1997
, “
A Vision-Aided Reverse Engineering Approach to Reconstructing Free-Form Surfaces
,”
Rob. Comput.-Integr. Manufact.
,
13
, No.
4
, pp.
323
336
.
3.
Motavalli
,
S.
,
Suharitdamrong
,
V.
, and
Alradhdan
,
A.
,
1998
, “
Design Model Generation for Reverse Engineering Using Multisensors
,”
IIE Trans.
,
30
, pp.
357
366
.
4.
Nashman
,
M.
,
1993
, “
Vision and Touch Sensors for Dimensional Inspection
,”
Manuf. Rev.
,
6
, No.
2
, pp.
155
162
.
5.
Sobh
,
T. M.
, and
Owen
,
J. C.
,
1995
, “
A Sensing Strategy for the Reverse Engineering of Machined Parts
,”
J. Intell. Rob. Sys.
,
14
, pp.
323
340
.
6.
Garcı´a, M. A., Vela´zquez, S., Sappa, A. D., and Basanez, L., 1998, “Autonomous Sensor Planning for 3D Reconstruction of Complex Objects from Range Images,” Proceedings of the 1998 IEEE International Conference on Robotics and Automation, May 16–20, 1998, Leuven, Belgium, Vol. 4, pp. 3085–3090.
7.
Kutulakos, K. N., Dyer, C. R., and Lumelsky, V. J., 1994, “Provable Strategies for Vision-Guided Exploration in Three Dimensions,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, May 8–13, 1994, San Diego, CA, Vol. 2, pp. 1365–1372.
8.
Maver
,
J.
, and
Bajcsy
,
R.
,
1993
, “
Occlusion as a Guide for Planning the Next View
,”
IEEE Trans. Pattern Recognition Mach. Intell.
,
15
, No.
5
, pp.
417
433
.
9.
Pito, R., and Bajcsy, R., 1995, “Solution to the Next-Best View Problem for Automated CAD Model Acquisition of Free-Form Objects Using Range Cameras,” Proceedings of SPIE, Vol. 2596, Oct. 25–26, 1995, Philadelphia, PA, pp. 78–89.
10.
Reed
,
M. K.
, and
Allen
,
P. K.
,
1999
, “
3D Modeling from Range Imagery: An Incremental Method with a Planning Component
,”
Image Vis. Underst.
,
17
, No.
2
, pp.
99
111
.
11.
Whaite
,
P.
, and
Ferrie
,
F. P.
,
1997
, “
Autonomous Exploration: Driven by Uncertainty
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
19
, No.
3
, pp.
193
205
.
12.
Tarbox
,
G. H.
, and
Gottschlich
,
S. N.
,
1995
, “
Planning for Complete Sensor Coverage in Inspection
,”
Comput. Vis. Image Underst.
,
61
, No.
1
, pp.
84
111
.
13.
Cowen
,
C. K.
, and
Kovesi
,
P. D.
,
1988
, “
Automatic Sensor Placement from Vision Task Requirements
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
10
, No.
3
, pp.
407
416
.
14.
Tarbanis
,
K. A.
,
Allen
,
P. K.
, and
Tsai
,
R. Y.
,
1995
, “
A Survey of Sensor Planning in Computer Vision
,”
IEEE Trans. Rob. Autom.
,
11
, No.
1
, pp.
86
104
.
15.
Menq
,
C. H.
,
Yau
,
H. T.
, and
Wong
,
C. L.
,
1992
, “
An Intelligent Planning Environment for Automated Dimensional Inspection Using Coordinate Measuring machines
,”
J. Eng. Ind.
,
114
, No.
2
, pp.
222
230
.
16.
Yau
,
H. T.
, and
Menq
,
C. H.
,
1995
, “
Path Planning for Automated Dimensional Inspection Using Coordinate Measuring Machines
,”
Int. J. Mach. Tools Manuf.
,
35
, No.
6
, pp.
861
876
.
17.
Huang
,
J.
, and
Menq
,
C. H.
,
2001
, “
Combinatorial Manifold Mesh Reconstruction and Optimization from Unorganized Points with Arbitrary Topology
,”
Comput.-Aided Desi.
, (in press).
18.
Huang, J., 2001, “Geometric Feature Extraction and Model Reconstruction from Unorganized Points for Reverse Engineering of Mechanical Objects with Arbitrary Topology,” Ph.D. dissertation, Department of Mechanical Engineering, The Ohio State University, Columbus, OH (unpublished).
19.
Shen, T. S., 2000, “Multiple-Sensor Integration for Rapid and High-Precision Coordinate Metrology,” Ph.D. dissertation, Department of Mechanical Engineering, The Ohio State University, Columbus, OH (unpublished).
20.
Tarbanis
,
K. A.
,
Tsai
,
R. Y.
, and
Allen
,
P. K.
,
1995
, “
The MVP Sensor Planning System for Robotic Vision Tasks
,”
IEEE Trans. Rob. Autom.
,
11
, No.
1
, pp.
72
85
.
21.
Hong, Y. M., 1995, “An Automated Inspection Planning System for Coordinate Metrology Using Coordinate Measuring Machines,” Master Thesis, Department of Mechanical Engineering, The Ohio State University, Columbus, OH (unpublished).
22.
Lim
,
C. P.
, and
Menq
,
C. H.
,
1994
, “
CMM Feature Accessibility and Path Generation
,”
Int. J. Prod. Res.
,
32
, No.
3
, pp.
597
618
.
23.
Spyridi, A. J., and Requicha, A. A. G., 1990, “Accessibility Analysis for the Automatic Inspection of Mechanical Parts by Coordinate Measuring Machines,” Proceedings of the 1990 IEEE International Conference on Robotics and Automation, May 13–18, 1990, Cincinnati, OH, Vol. 2, pp. 1284–1289.
24.
Vafaeesefat
,
A.
, and
Elmaraghy
,
H. A.
,
2000
, “
Automated Accessibility Analysis and Measurement Clustering for CMMs
,”
Int. J. Prod. Res.
,
38
, No.
10
, pp.
2215
2231
.
25.
Ziemian
,
C. W.
, and
Medeiros
,
D. J.
,
1997
, “
Automated Feature Accessibility Algorithm for Inspection on a Coordinate Measuring Machine
,”
Int. J. Prod. Res.
,
35
, No.
10
, pp.
2839
2856
.
26.
Chen
,
C. H.
, and
Kak
,
A. C.
,
1989
, “
A Robot Vision System for Recognizing 3D Objects in Low-order Polynomial Time
,”
IEEE Trans. Syst. Man Cybern.
,
19
, No.
6
, pp.
1535
1563
.
27.
Roberts, D. R., and Marshall, A. D., 1997, “Viewpoint Planning for Complete Surface Coverage of Three-Dimensional Object,” Technical Report No. 97008, Department of Computer Science, Cardiff University, U.K. (unpublished).
28.
Trucco
,
E.
,
Umasuthan
,
M.
, and
Wallace
,
A. M.
,
1997
, “
Model-Based Planning of Optimal Sensor Placements for Inspection
,”
IEEE Trans. Rob. Autom.
,
13
, No.
2
, pp.
182
193
.
29.
Sakane
,
S.
,
Ishii
,
M.
, and
Kakikura
,
M.
,
1987
, “
Occlusion Avoidance of Visual Sensors Based on a Hand–Eye Action Simulation System: HEAVEN
,”
Adv. Rob.
,
2
, No.
2
, pp.
149
165
.
30.
Kenner, H., 1976, Geodesic Math and How to Use It, University of California Press, Berkeley, CA.
You do not currently have access to this content.