Electromechanical products and systems are often designed to transform or reconfigure between two or more states. Each state is customized to fulfill a specific set of functions, and the transformation between these multiple states allows for greater functionality and the elimination of many trade-offs between conflicting needs. Empirical examination of existing transforming systems and their similarities has led to a foundational transformation design theory, with meta-analogies and guidelines that explain how transformation processes occur, when they are useful, and how the designer can ensure their maximum benefit. The foundation of these principles and guidelines forms a meta-analogical framework for designing transformers and transformational systems. This paper presents a history of the development of transformational design theory, including the relationship of the research to case-based reasoning in other fields. Ideation methods are presented that specifically exploit the meta-analogies, i.e., categories of transformers. An example design problem is considered to illustrate the potential utility of this design-by-analogy approach.

1.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Szmerekovsky
,
A.
, 2006, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
International Design Engineering Technical Conferences
, Philadelphia, PA, Paper No. DETC-2006-99575.
2.
Skiles
,
S. M.
,
Singh
,
V.
,
Krager
,
J. E.
,
Seepersad
,
C. C.
,
Wood
,
K. L.
, and
Jensen
,
D.
, 2006, “
Adapted Concept Generation and Computational Techniques for the Application of a Transformer Design Theory
,”
International Design Engineering Technical Conferences
, Philadelphia, PA, Paper No. DETC-2006-99584.
3.
Singh
,
V.
,
Walther
,
B.
,
Krager
,
J.
,
Putnam
,
N.
,
Koraishy
,
B.
,
Wood
,
K. L.
, and
Jensen
,
D.
, 2007, “
Design for Transformation: Theory, Method, and Application
,”
International Design Engineering Technical Conferences
, Las Vegas, NV, Paper No. DETC-2007-34876.
4.
Freeland
,
R. E.
,
Bilyeu
,
G. D.
,
Veal
,
G. R.
,
Steiner
,
M. D.
, and
Carson
,
D. E.
, 1997,
Large Inflatable Deployable Antenna Flight Experiment Results
,
48th Congress of the International Astronautical Federation
, Turin, Italy.
5.
Ard
,
S.
, 2004, “
041208-N-5313A-012
,” Navy News Service, http://www.navy.mil/view_single.asp?id=19521http://www.navy.mil/view_single.asp?id=19521
7.
Linsey
,
J. S.
,
Wood
,
K. L.
, and
Markman
,
A. B.
, 2008, “
Modality and Representation in Analogy
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
22
, pp.
85
100
.
8.
Altshuller
,
G. S.
, 1984,
Creativity as an Exact Science
,
Gordon and Breach
,
Luxembourg
.
9.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
, 1999, “
Product Architecture Development With Quantitative Functional Models
,”
ASME
Paper No. DETC99/DTM-8764.
10.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
, 2002, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
0934-9839,
13
(
2
), pp.
65
82
.
11.
Gero
,
J. S.
, 1990, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Mag.
0738-4602,
11
(
4
), pp.
26
36
.
12.
Gero
,
J. S.
, and
Kannengiesser
,
U.
, 2004, “
The Situated Function-Behaviour-Structure Framework
,”
Des. Stud.
0142-694X,
25
(
4
), pp.
373
391
.
13.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
, 2005, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
19
, pp.
113
132
.
14.
Watson
,
I.
, and
Marir
,
F.
, 1994, “
Case-Based Reasoning: A Review
,”
Knowl. Eng. Rev.
0269-8889,
9
, pp.
327
354
.
15.
Maher
,
M. L.
and
Pu
,
P.
, eds., 1997,
Issues and Applications of Case-Based Reasoning in Design
,
Lawrence Erlbaum
,
Mahwah, NJ
.
16.
Sriram
,
D.
,
Stephanopoulos
,
G.
,
Logcher
,
R.
,
Gossard
,
D.
,
Groleau
,
N.
,
Serrano
,
D.
, and
Navinchandra
,
D.
, 1989, “
Knowledge-Based System Applications in Engineering Design: Research at MIT
,”
AI Mag.
0738-4602,
10
(
3
), pp.
79
96
.
17.
Singh
,
V.
,
Warren
,
L.
,
Putnam
,
N.
,
Walther
,
B.
,
Koraishy
,
B.
,
Wood
,
K.
,
Becker
,
P.
,
Danielson
,
A.
,
Jensen
,
D.
, and
Szmerekovsky
,
A.
, 2006, “
A Novel Exploration Into Gust Resistant Operation of MAVs/UAVs Through Transformation
,”
Proceedings of Second U.S.-European Conference on Micro Air Vehicles
, Destin.
18.
Skiles
,
S. M.
, 2006, “
Development of Principles of Facilitators for Transformational Product Design
,” Mechanical Engineering, University of Texas at Austin, Austin, TX.
19.
Singh
,
V.
, 2007, “
Design for Transformation: Design Principles and Approach With Concept Generation Tools and Techniques
,” Mechanical Engineering, University of Texas at Austin, Austin, TX.
20.
Weaver
,
J.
, 2008, “
Transformer Design: Empirical Studies of Transformation Principles, Facilitators, and Functions
,” Mechanical Engineering, University of Texas at Austin, Austin, TX.
21.
Putnam
,
N.
, 2008, “
Energy Systems in MAVs–Theoretical and Applied Perspectives
,” Mechanical Engineering, University of Texas at Austin, Austin, TX.
22.
Weaver
,
J.
,
Wood
,
K. L.
, and
Jensen
,
D.
, 2008, “
Transformation Facilitators: A Quantitative Analysis of Reconfigurable Products and Their Characteristics
,”
International Design Engineering Technical Conferences
, Brooklyn, NY, Paper No. DETC-2008-49891.
23.
Wang
,
D.
,
Kuhr
,
R.
,
Kaufman
,
K.
,
Crawford
,
R.
,
Wood
,
K. L.
, and
Jensen
,
D.
, 2009, “
Empirical Analysis of Transformers in the Development of a Storyboarding Methodology
,”
International Design Engineering Technical Conferences
, San Diego, CA, Paper No. DETC-2009-87420.
25.
27.
Ackeret
,
P.
, 2002, “
Multipurpose Hand-Held Device
,” U.S. Patent No. 6,493,893.
32.
Villa
,
F.
, 2005, “
Umbrella Apparatus
,” U.S. Patent No. 6,910,490.
34.
Ogawa
,
I.
, 1980, “
Articulated Reconfigurable Robot Doll
,” U.S. Patent No. 4,206,564.
42.
Vann
,
C. S.
, 2003, “
Telescoping Writing Instrument
,” U.S. Patent No. 6,616,365.
46.
Jensen
,
D.
,
Weaver
,
J.
,
Wood
,
K.
,
Linsey
,
J.
, and
Wood
,
J.
, 2009, “
Techniques to Enhance Concept Generation and Develop Creativity
,”
American Society for Engineering Education Annual Conference
, Austin, TX, Paper No. AC2009-2369.
47.
Weaver
,
J. M.
,
Kurh
,
R.
,
Wang
,
D.
,
Crawford
,
R. H.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Linsey
,
J. S.
, 2009, “
Increasing Innovation in Multi-Function Systems: Evaluation and Experimentation of Two Ideation Methods for Design
,”
International Design Engineering Technical Conferences
, San Diego, CA, Paper No. DETC-2009-86256.
48.
WordNet: A Lexical Database for the English Language
,” http://wordnetweb.princeton.edu/perl/webwnhttp://wordnetweb.princeton.edu/perl/webwn
49.
Fellbaum
,
C.
, 1998,
Wordnet, an Electronic Lexical Database
,
MIT
,
Cambridge, MA
.
50.
Linsey
,
J. S.
, 2007, “
Design-by-Analogy and Representation in Innovative Engineering Concept Generation
,” Mechanical Engineering, University of Texas at Austin, Austin, TX.
51.
Linsey
,
J.
,
Wood
,
K.
, and
Markman
,
A.
, 2008, “
Increasing Innovation: Presentation and Evaluation of the Wordtree Design-by-Analogy Method
,”
ASME Design Theory and Methodology Conference
, New York.
52.
Linsey
,
J.
,
Wood
,
K.
, and
Markman
,
A.
, 2008, “
WordTrees: A Method for Design-by-Analogy
,”
Proceedings of the 2008 ASEE Annual Conference and Exhibition
, Pittsburgh, PA.
You do not currently have access to this content.