Fixture layout robust design of multistation manufacturing systems aims for an optimal design that enables the dimensional variation of a product insensitive to the variations of process variables in the manufacturing process. The robust design involves a high dimension and complex global optimization problem. Recent advances in stream of variation modeling techniques enable effective formulation of the optimization problem at the system level. However, there is a challenge of computation complexity in terms of searching optimal design parameters in a high dimension, nonconvex, and discontinuous design space. This makes many available algorithms ineffective or even invalid. In this paper, an alternative sequential space filling strategy is proposed, which adopts sampling approaches to search optimal designs. To improve computation efficiency, the search space is sequentially reduced to generate a series of subspaces, and a method is designed to ensure a complete coverage of these subspaces in the original feasible space. In order to validate the proposed method, a floor pan assembly from an automotive body assembly process is modeled, and then the fixture robust design is conducted with the developed methods. To show the effectiveness of the proposed method, genetic algorithm and sequential quadratic programming are also applied in the case study for comparison.

1.
Rong
,
Y.
,
Huang
,
S. H.
, and
Hou
,
Z.
, 2005,
Advanced Computer-Aided Fixture Design
,
Elsevier Academic
,
New York
.
2.
Kim
,
P.
, and
Ding
,
Y.
, 2004, “
Optimal Design of Fixture Layout in Multistation Assembly Processes
,”
IEEE Trans. Autom. Sci. Eng.
1545-5955,
1
(
2
), pp.
133
145
.
3.
Kim
,
P.
, and
Ding
,
Y.
, 2005, “
Optimal Engineering System Design Guided by Data-Mining Methods
,”
Technometrics
0040-1706,
47
(
3
), pp.
336
348
.
4.
Trappey
,
J. C.
, and
Liu
,
C. R.
, 1990, “
A Literature Survey of Fixture Design Automation
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
5
, pp.
240
255
.
5.
Shi
,
J.
, and
Zhou
,
S.
, 2009, “
Quality Control and Improvement for Multistage Systems: A Survey
,”
IIE Trans.
0740-817X,
41
(
9
), pp.
744
753
.
6.
Shi
,
J.
, 2006,
Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes
,
CRC
,
Boca Raton, FL
.
7.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2002, “
Design Evaluation of Multi-Station Assembly Process by Using State Space Approach
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
408
418
.
8.
Huang
,
W.
,
Lin
,
J.
,
Bezdecny
,
M. R.
,
Kong
,
Z.
, and
Ceglarek
,
D.
, 2007, “
Stream-of-Variation (SOVA) Modeling I: A Generic 3D Variation Model for Rigid Body Assembly in Single Station Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
4
), pp.
832
842
.
9.
Huang
,
W.
,
Lin
,
J.
,
Kong
,
Z.
, and
Ceglarek
,
D.
, 2007, “
Stream-of-Variation (SOVA) Modeling II: A Generic 3D Variation Model for Rigid Body Assembly in Multi Station Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
4
), pp.
821
831
.
10.
Ceglarek
,
D.
,
Huang
,
W.
,
Zhou
,
S.
,
Ding
,
Y.
,
Kumar
,
R.
, and
Zhou
,
Y.
, 2004, “
Time-Based Competition in Multistage Manufacturing: Stream-of-Variation Analysis (SOVA) Methodology—Review
,”
International Journal of Flexible Manufacturing Systems
,
16
(
1
), pp.
11
44
.
11.
Rearck
,
M. R.
,
Hu
,
S. J.
, and
Wu
,
S. M.
, 1993, “
Optimal Fixture Design for Deformable Sheet Metal Workpieces
,”
Trans. NAMRI/SME
1047-3025,
21
, pp.
407
412
.
12.
Cai
,
W. J.
, and
Hu
,
J.
, 1996, “
Optimal Fixture Configuration Design for Sheet Metal Assembly With Spring Back
,”
Trans. NAMRI/SME
1047-3025,
21
, pp.
229
234
.
13.
Cai
,
W. J.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
, 1997, “
A Variational Method for Robust fixture Configuration Design for 3-D Workpieces
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
593
602
.
14.
Wang
,
M. Y.
, and
Pelinescu
,
D. M.
, 2001, “
Optimizing Fixture Layout in a Point-Set Domain
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
, pp.
312
323
.
15.
Jin
,
J.
, and
Shi
,
J.
, 1999, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
4
), pp.
756
762
.
16.
Huang
,
W.
,
Phoomboplab
,
T.
, and
Ceglarek
,
D.
, 2009, “
Process Capability Surrogate Model Based Tolerance Synthesis of Multi Station Manufacturing Systems (MMS)
,”
IIE Trans., Qual. Reliab. Eng.
1545-8830,
41
(
4
), pp.
309
322
.
17.
Huang
,
W.
,
Ceglarek
,
D.
, and
Zhou
,
Z.
, 2004, “
Tolerance Analysis for Design of Multistage Manufacturing Processes Using Number-Theoretical Net Method (NT-net)
,”
International Journal of Flexible Manufacturing Systems
,
16
, pp.
65
90
.
18.
Fang
,
K. T.
, and
Wang
,
Y.
, 1994,
Number-Theoretical Methods in Statistics
,
Chapman and Hall
,
New York
.
19.
Huang
,
W.
, and
Kong
,
Z.
, 2008, “
Model Simplification in Compliant Assembly Analysis
,”
Trans. NAMRI/SME
1047-3025,
36
, pp.
549
556
.
20.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
, 2003,
Design and Analysis of Computer Experiments
,
Springer-Verlag
,
New York
.
21.
Fang
,
K. T.
,
Li
,
R.
, and
Sudjianto
,
A.
, 2006,
Design and Modeling for Computer Experiments
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
22.
Zabinsky
,
Z. B.
, 2003,
Stochastic Adaptive Search of Global Optimization
,
Kluwer Academic
,
Dordrecht
.
23.
Fang
,
K. T.
,
Lin
,
D. K. J.
,
Winkle
,
P.
, and
Zhang
,
Y.
, 2000, “
Uniform Design: Theory and Application
,”
Technometrics
0040-1706,
42
, pp.
237
248
.
24.
Wang
,
G. G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
370
380
.
25.
Zhou
,
S.
,
Huang
,
Q.
, and
Shi
,
J.
, 2003, “
State Space Modeling of Dimensional Variation Propagation in Multistage Machining Process Using Differential Motion Vectors
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
2
), pp.
296
309
.
26.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
0161-8458,
125
(
4
), pp.
673
681
.
27.
Hammersley
,
J. M.
, 1960, “
Monte Carlo Methods for Solving Multivariable Problems
,”
Ann. N.Y. Acad. Sci.
0077-8923,
86
, pp.
844
874
.
28.
Niederreiter
,
H.
, 1983,
A Quasi-Monte Carlo Method for the Approximate Computation of the Extreme Values of a Function, Studies in Pure Math
,
Birkhauser
,
Basel, Switzerland
, pp.
523
529
.
29.
Niederreiter
,
H.
, and
Peart
,
P.
, 1986, “
Localization of Search in Quasi-Monte Carlo Methods for Global Optimization
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
, pp.
660
664
.
30.
Mühlenbein
,
H.
,
Schomisch
,
D.
, and
Born
,
J.
, 1991, “
The Parallel Genetic Algorithm as Function Optimizer
,”
Parallel Comput.
0167-8191,
17
, pp.
619
632
.
You do not currently have access to this content.