Incomplete component information may lead to wide bounds for system reliability prediction, making decisions difficult in the system design stage. The missing information is often the component dependence, which is a crucial source for the exact system reliability estimation. Component dependence exists due to the shared environment and operating conditions. But it is difficult for system designers to model component dependence because they may have limited information about component design details if outside suppliers designed and manufactured the components. This research intends to produce narrow system reliability bounds with a new way for system designers to consider the component dependence implicitly and automatically without knowing component design details. The proposed method is applicable for a wide range of applications where the time-dependent system stochastic load is shared by components of the system. Simulation is used to obtain the extreme value of the system load for a given period of time, and optimization is employed to estimate the system reliability bounds, which are narrower than those from the traditional method with independent component assumption and completely dependent component assumption. Examples are provided to demonstrate the proposed method.

References

1.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091008
.
2.
Ditlevsen
,
O.
,
1979
, “
Narrow Reliability Bounds for Structural Systems
,”
J. Struct. Mech.
,
7
(
4
), pp.
453
472
.
3.
Cornell
,
C. A.
,
1967
, “
Bounds on the Reliability of Structural Systems
,”
J. Struct. Div.
,
93
(
1
), pp.
171
200
.
4.
Ramachandran
,
K.
,
2004
, “
System Reliability Bounds: A New Look With Improvements
,”
Civ. Eng. Environ. Syst.
,
21
(
4
), pp.
265
278
.
5.
Boole
,
G.
,
1854
,
Laws of Thought
(American Reprint of 1854 Edition),
Dover
,
New York
.
6.
Choi
,
S.-K.
,
Grandhi
,
R.
, and
Canfield
,
R. A.
,
2006
,
Reliability-Based Structural Design
,
Springer Science & Business Media
, Berlin.
7.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
,
1983
, “
First-Order Concepts in System Reliability
,”
Struct. Saf.
,
1
(
3
), pp.
177
188
.
8.
Kounias
,
E. G.
,
1968
, “
Bounds for the Probability of a Union, With Applications
,”
Ann. Math. Stat.
,
39
(
6
), pp.
2154
2158
.
9.
Hunter
,
D.
,
1976
, “
An Upper Bound for the Probability of a Union
,”
J. Appl. Probab.
,
13
(
3
), pp.
597
603
.
10.
Zhang
,
Y. C.
,
1993
, “
High-Order Reliability Bounds for Series Systems and Application to Structural Systems
,”
Comput. Struct.
,
46
(
2
), pp.
381
386
.
11.
Song
,
J.
, and
Der Kiureghian
,
A.
,
2003
, “
Bounds on System Reliability by Linear Programming
,”
J. Eng. Mech.
,
129
(
6
), pp.
627
636
.
12.
Domyancic
,
L. C.
, and
Millwater
,
H. R.
,
2012
, “
Advances in Bounding Techniques for Aircraft Structures
,”
AIAA J.
,
50
(
6
), pp.
1307
1313
.
13.
Cheng
,
Y.
, and
Du
,
X.
,
2016
, “
System Reliability Analysis With Dependent Component Failures During Early Design Stage—A Feasibility Study
,”
ASME J. Mech. Des.
,
138
(
5
), p.
051405
.
14.
Zhang
,
H.
,
Dai
,
H.
,
Beer
,
M.
, and
Wang
,
W.
,
2013
, “
Structural Reliability Analysis on the Basis of Small Samples: An Interval Quasi-Monte Carlo Method
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
137
151
.
15.
Utkin
,
L. V.
, and
Kozine
,
I. O.
,
2002
, “
Stress-Strength Reliability Models Under Incomplete Information
,”
Int. J. Gen. Syst.
,
31
(
6
), pp.
549
568
.
16.
Guo
,
J.
, and
Du
,
X.
,
2010
, “
Reliability Analysis for Multidisciplinary Systems With Random and Interval Variables
,”
AIAA J.
,
48
(
1
), pp.
82
91
.
17.
Gunawan
,
S.
, and
Papalambros
,
P. Y.
,
2006
, “
A Bayesian Approach to Reliability-Based Optimization With Incomplete Information
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
909
918
.
18.
Ditlevsen
,
O.
,
1979
, “
Generalized Second Moment Reliability Index
,”
J. Struct. Mech.
,
7
(
4
), pp.
435
451
.
19.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format (For Reliability Analysis in Multivariate Problems)
,”
J. Eng. Mech. Div.
,
100
(1), pp.
111
121
.
20.
Der Kiureghian
,
A.
, and
Liu
,
P.-L.
,
1986
, “
Structural Reliability Under Incomplete Probability Information
,”
J. Eng. Mech.
,
112
(
1
), pp.
85
104
.
21.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
1996
,
Structural Reliability Methods
,
Wiley
,
New York
.
22.
Høyland
,
A.
, and
Rausand
,
M.
,
2009
,
System Reliability Theory: Models and Statistical Methods
,
Wiley
, New York.
23.
Xie
,
M.
, and
Lai
,
C. D.
,
1996
, “
Reliability Analysis Using an Additive Weibull Model With Bathtub-Shaped Failure Rate Function
,”
Reliab. Eng. Syst. Saf.
,
52
(
1
), pp.
87
93
.
24.
Cordeiro
,
G. M.
,
Ortega
,
E. M. M.
, and
Nadarajah
,
S.
,
2010
, “
The Kumaraswamy Weibull Distribution With Application to Failure Data
,”
J. Franklin Inst.
,
347
(
8
), pp.
1399
1429
.
25.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
A Sampling Approach to Extreme Value Distribution for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
135
(
7
), p.
071003
.
26.
Spanos
,
P. D.
,
Beer
,
M.
, and
Red-Horse
,
J.
,
2007
, “
Karhunen–Loève Expansion of Stochastic Processes With a Modified Exponential Covariance Kernel
,”
J. Eng. Mech.
,
133
(
7
), pp.
773
779
.
27.
Cho
,
H.
,
Venturi
,
D.
, and
Karniadakis
,
G. E.
,
2013
, “
Karhunen–Loève Expansion for Multi-Correlated Stochastic Processes
,”
Probab. Eng. Mech.
,
34
, pp.
157
167
.
28.
Levy
,
B. C.
,
2008
,
Principles of Signal Detection and Parameter Estimation
,
Springer Science & Business Media
, Berlin.
29.
Betz
,
W.
,
Papaioannou
,
I.
, and
Straub
,
D.
,
2014
, “
Numerical Methods for the Discretization of Random Fields by Means of the Karhunen–Loève Expansion
,”
Comput. Methods Appl. Mech. Eng.
,
271
, pp.
109
129
.
30.
Li
,
C.-C.
, and
Der Kiureghian
,
A.
,
1993
, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech.
,
119
(
6
), pp.
1136
1154
.
31.
Daniels
,
H. E.
,
1954
, “
Saddlepoint Approximations in Statistics
,”
Ann. Math. Stat.
,
25
(
4
), pp.
631
650
.
32.
Huzurbazar
,
S.
,
1999
, “
Practical Saddlepoint Approximations
,”
Am. Stat.
,
53
(
3
), pp.
225
232
.
33.
Du
,
X.
, and
Sudjianto
,
A.
,
2004
, “
First Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
,
42
(
6
), pp.
1199
1207
.
34.
Du
,
X.
,
2010
, “
System Reliability Analysis With Saddlepoint Approximation
,”
Struct. Multidiscip. Optim.
,
42
(
2
), pp.
193
208
.
35.
Fisher
,
R. A.
,
1930
, “
Moments and Product Moments of Sampling Distributions
,”
Proc. London Math. Soc.
,
s2-30
(
1
), pp.
199
238
.
36.
Dao-Thien
,
M.
, and
Massoud
,
M.
,
1974
, “
On the Relation Between the Factor of Safety and Reliability
,”
J. Eng. Ind.
,
96
(
3
), pp.
853
857
.
37.
Vose
,
D.
,
1996
,
Quantitative Risk Analysis: A Guide to Monte Carlo Simulation Modelling
,
Wiley
, New York.
You do not currently have access to this content.