In the early stages of the product design, multiple principle solutions are obtained through function solving, and a large number of conceptual schemes are generated by combination. Therefore, scheme decisions are important factors in the concept design. The existing decision methods primarily focus on the satisfaction of economic needs, and the impact of technical indicators on the technical performance of the scheme, while ignoring the conflict of needs between the two subject objectives in the decision process. Actual decisions need to be weighed against each other’s expectations. In addition, the qualitative interactive objectives will affect the decision direction of the conceptual scheme. Herein, we propose a relative equilibrium decision approach for concept design based on the fuzzy decision-making trial and evaluation laboratory-cooperative game model. This model is primarily divided into two parts. One is to solve the impact relationship between the objectives, and the objectives’ weights are obtained through fuzzy decision-making trial and evaluation laboratory (FDEMATEL). The second is to incorporate the objectives’ weights and impact utility into the cooperative game model, to reasonably weigh the relative interests of the two subjects to meet the corresponding interactions, and to obtain the scheme with the largest overall design desirability. Finally, the case study proves that this decision model can identify the optimal scheme. This model is proven to be robust by comparison with other methods.

References

1.
Xu
,
Z.
, and
Wang
,
H.
,
2016
, “
Managing Multi-Granularity Linguistic Information in Qualitative Group Decision Making: An Overview
,”
Granular Comput.
,
1
(
1
), pp.
21
35
.
2.
Nguyen
,
H. T.
,
Dawal
,
S. Z. M.
,
Nukman
,
Y.
, and
Aoyama
,
H.
,
2014
, “
A Hybrid Approach for Fuzzy Multi-Attribute Decision Making in Machine Tool Selection With Consideration of the Interactions of Attributes
,”
Expert Syst. Appl.
,
41
(
6
), pp.
3078
3090
.
3.
Pahl
,
G.
, and
Beitz
,
W.
,
1984
,
Engineering Design
,
Design Council
,
London
.
4.
Khalid
,
H. M.
, and
Helander
,
M. G.
,
2006
, “
Customer Emotional Needs in Product Design
,”
Concurrent Eng. Res. Appl.
,
14
(
3
), pp.
197
206
.
5.
Jiang
,
S. F.
, and
Li
,
J. Q.
,
2016
, “
Research of the Effectual Action Unit-Based Inverse Method for Solving the Functional Structure of Design History
,”
Adv. Mech. Eng.
,
8
(
8
), pp.
1
12
.
6.
Withanage
,
C.
,
Park
,
T.
, and
Choi
,
H. J.
,
2010
, “
A Concept Evaluation Method for Strategic Product Design With Concurrent Consideration of Future Customer Requirements
,”
Concurrent Eng. Res. Appl.
,
18
(
4
), pp.
275
289
.
7.
Ma
,
H.
,
Chu
,
X.
,
Xue
,
D.
, and
Chen
,
D.
,
2017
, “
A Systematic Decision Making Approach for Product Conceptual Design Based on Fuzzy Morphological Matrix
,”
Expert Syst. Appl.
,
81
(
C
), pp.
444
456
.
8.
Malak
,
R. J.
, and
Paredis
,
C. J.
,
2010
, “
Using Parameterized Pareto Sets to Model Design Concepts
,”
J. Mech. Des.
,
132
(
4
), pp.
215
228
.
9.
Tiwari
,
V.
,
Jain
,
P. K.
, and
Tandon
,
P.
,
2016
, “
Product Design Concept Evaluation Using Rough Sets and VIKOR Method
,”
Adv. Eng. Inform.
,
30
(
1
), pp.
16
25
.
10.
Chen
,
Y.
,
Feng
,
P.
,
He
,
B.
,
Lin
,
Z.
, and
Xie
,
Y.
,
2006
, “
Automated Conceptual Design of Mechanisms Using Improved Morphological Matrix
,”
J. Mech. Des.
,
128
(
3
), pp.
516
526
.
11.
Zhai
,
L. Y.
,
Khoo
,
L. P.
, and
Zhong
,
Z. W.
,
2009
, “
A Rough Set Based QFD Approach to the Management of Imprecise Design Information in Product Development
,”
Adv. Eng. Inform.
,
23
(
2
), pp.
222
228
.
12.
Atlason
,
R. S.
,
Stefansson
,
A. S.
,
Wietz
,
M.
, and
Giacalone
,
D.
,
2018
, “
A Rapid Kano-Based Approach to Identify Optimal User Segments
,”
Res. Eng. Des.
,
29
(
3
), pp.
459
467
.
13.
Zhang
,
Z. F.
, and
Chu
,
X. N.
,
2009
, “
A New Integrated Decision-Making Approach for Design Alternative Selection for Supporting Complex Product Development
,”
Int. J. Comput. Integr. Manuf.
,
22
(
3
), pp.
179
198
.
14.
Ayağ
,
Z.
,
2005
, “
A Fuzzy AHP-Based Simulation Approach to Concept Evaluation in a NPD Environment
,”
Iie Trans.
,
37
(
9
), pp.
827
842
.
15.
Jiang
,
S. F.
,
Jing
,
L. T.
,
Peng
,
X.
,
Chai
,
H.
, and
Li
,
J. Q.
,
2018
, “
Conceptual Design Conceptual Scheme Optimization Based on Integrated Design Objectives
,”
Concurrent Eng. Res. Appl.
,
26
(
3
), pp.
231
250
.
16.
Kang
,
Y.
, and
Tang
,
D.
,
2013
, “
Matrix-Based Computational Conceptual Design With Ant Colony Optimisation
,”
J. Eng. Des.
,
24
(
6
), pp.
429
452
.
17.
Ölvander
,
J.
,
Lundén
,
B.
, and
Gavel
,
H.
,
2009
, “
A Computerized Optimization Framework for the Morphological Matrix Applied to Aircraft Conceptual Design
,”
Comput. Aided Des.
,
41
(
3
), pp.
187
196
.
18.
Cantamessa
,
M.
,
Montagna
,
F.
, and
Cascini
,
G.
,
2016
, “
Design for Innovation—A Methodology to Engineer the Innovation Diffusion Into the Development Process
,”
Comput. Ind.
,
75
, pp.
46
57
.
19.
Gabus
,
A.
, and
Fontela
,
E.
,
1972
,
World Problems, an Invitation to Further Thought Within the Framework of DEMATEL
,
Battelle Geneva Research Centre
,
Geneva, Switzerland
.
20.
Pamučar
,
D.
,
Mihajlović
,
M.
,
Obradović
,
R.
, and
Atanasković
,
P.
,
2017
, “
Novel Approach to Group Multi-Criteria Decision Making Based on Interval Rough Numbers: Hybrid DEMATEL-ANP-MAIRCA model
,”
Expert Syst. Appl.
,
88
, pp.
58
80
.
21.
Saaty
,
T. L.
,
1990
, “
How to Make a Decision: The Analytic Hierarchy Process
,”
Eur. J. Oper. Res.
,
48
(
1
), pp.
9
26
.
22.
Ayağ
,
Z.
,
2005
, “
An Integrated Approach to Evaluating Conceptual Design Alternatives in a New Product Development Environment
,”
Int. J. Prod. Res.
,
43
(
4
), pp.
687
713
.
23.
Mohebbi
,
A.
,
Achiche
,
S.
, and
Baron
,
L.
,
2018
, “
Multi-Criteria Fuzzy Decision Support for Conceptual Evaluation in Design of Mechatronic Systems: A Quadrotor Design Case Study
,”
Res. Eng. Des.
,
29
(
3
), pp.
329
349
.
24.
Saaty
,
T. L.
,
1996
,
Decision Making With Dependence and Feedback: The Analytic Network Process
,
RWS Publication
,
Pittsburgh, PA
.
25.
Gürbüz
,
T.
,
Alptekin
,
S. E.
, and
Alptekin
,
G. I.
,
2012
, “
A Hybrid MCDM Methodology for ERP Selection Problem With Interacting Criteria
,”
Decis. Support Syst.
,
54
(
1
), pp.
206
214
.
26.
Geng
,
X.
, and
Chu
,
X.
,
2012
, “
A New Importance–Performance Analysis Approach for Customer Satisfaction Evaluation Supporting PSS Design
,”
Expert Syst. Appl.
,
39
(
1
), pp.
1492
1502
.
27.
Chen
,
J. K.
, and
Chen
,
I. S.
,
2010
, “
Using a Novel Conjunctive MCDM Approach Based on DEMATEL, Fuzzy ANP, and TOPSIS as an Innovation Support System for Taiwanese Higher Education
,”
Expert Syst. Appl.
,
37
(
3
), pp.
1981
1990
.
28.
Wu
,
W. W.
, and
Lee
,
Y. T.
,
2007
, “
Developing Global Managers’ Competencies Using the Fuzzy DEMATEL Method
,”
Expert Syst. Appl.
,
32
(
2
), pp.
499
507
.
29.
Zhou
,
Q.
,
Huang
,
W.
, and
Zhang
,
Y.
,
2011
, “
Identifying Critical Success Factors in Emergency Management Using a Fuzzy DEMATEL Method
,”
Saf. Sci.
,
49
(
2
), pp.
243
252
.
30.
Ayağ
,
Z.
,
2016
, “
An Integrated Approach to Concept Evaluation in a New Product Development
,”
J. Intell. Manuf.
,
27
(
5
), pp.
991
1005
.
31.
Chen
,
M. S.
,
Lin
,
M. C.
,
Wang
,
C. C.
, and
Chang
,
C. A.
,
2009
, “
Using HCA and TOPSIS Approaches in Personal Digital Assistant Menu–Icon Interface Design
,”
Int. J. Ind. Ergon.
,
39
(
5
), pp.
689
702
.
32.
Song
,
W.
,
Ming
,
X.
, and
Wu
,
Z.
,
2013
, “
An Integrated Rough Number-Based Approach to Design Concept Evaluation Under Subjective Environments
,”
J. Eng. Des.
,
24
(
5
), pp.
320
341
.
33.
Zhang
,
Z. J.
,
Gong
,
L.
,
Jin
,
Y.
,
Xie
,
J.
, and
Hao
,
J.
,
2017
, “
A Quantitative Approach to Design Alternative Evaluation Based on Data-Driven Performance Prediction
,”
Adv. Eng. Inform.
,
32
(
C
), pp.
52
65
.
34.
David
,
E.
,
Azoulay-Schwartz
,
R.
, and
Kraus
,
S.
,
2006
, “
Bidding in Sealed-Bid and English Multi-Attribute Auctions
,”
Decis. Support Syst.
,
42
(
2
), pp.
527
556
.
35.
Wang
,
M. X.
,
Liu
,
S. L.
,
Wang
,
S. Y.
, and
Lai
,
K. K.
,
2010
, “
A Weighted Product Method for Bidding Strategies in Multi-Attribute Auctions
,”
J. Syst. Sci. Complex.
,
23
(
1
), pp.
194
208
.
36.
Jiménez
,
A.
,
Mateos
,
A.
, and
Sabio
,
P.
,
2013
, “
Dominance Intensity Measure Within Fuzzy Weight Oriented MAUT: An Application
,”
Omega
,
41
(
2
), pp.
397
405
.
37.
Chen
,
N.
,
Xu
,
Z.
, and
Xia
,
M.
,
2015
, “
The ELECTRE I Multi-Criteria Decision-Making Method Based on Hesitant Fuzzy Sets
,”
Int. J. Inf. Technol. Decis. Making
,
14
(
3
), pp.
621
657
.
38.
Liu
,
P.
, and
Zhang
,
X.
,
2011
, “
Research on the Supplier Selection of a Supply Chain Based on Entropy Weight and Improved ELECTRE-III Method
,”
Int. J. Prod. Res.
,
49
(
3
), pp.
637
646
.
39.
Shidpour
,
H.
,
Cunha
,
C. D.
, and
Bernard
,
A.
,
2016
, “
Group Multi-Criteria Design Concept Evaluation Using Combined Rough Set Theory and Fuzzy Set Theory
,”
Expert Syst. Appl.
,
64
, pp.
633
644
.
40.
Xiao
,
A.
,
Zeng
,
S.
,
Allen
,
J. K.
,
Rosen
,
D. W.
, and
Mistree
,
F.
,
2005
, “
Collaborative Multidisciplinary Decision Making Using Game Theory and Design Capability Indices
,”
Res. Eng. Des.
,
16
(
1–2
), pp.
57
72
.
41.
Lewis
,
K.
, and
Mistree
,
F.
,
1998
, “
Collaborative, Sequential and Isolated Decisions in Design
,”
J. Mech. Des.
,
120
(
120
), pp.
643
652
.
42.
Rao
,
S. S.
, and
Freiheit
,
T. I.
, “
A Modified Game Theory Approach to Multiobjective Optimization
,”
J. Mech. Des.
,
113
(
3
), pp.
286
291
.
43.
Fernández
,
M. G.
,
Panchal
,
J. H.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2005
, “
Concise Interactions and Effective Management of Shared Design Spaces: Moving Beyond Strategic Collaboration Towards Co-Design
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
.
44.
Takai
,
S.
,
2010
, “
A Game-Theoretic Model of Collaboration in Engineering Design
,”
J. Mech. Des.
,
132
(
5
),
051005
.
45.
Aliahmadi
,
A.
,
Sadjadi
,
S. J.
, and
Jafari-Eskandari
,
M.
,
2011
, “
Design a New Intelligence Expert Decision Making Using Game Theory and Fuzzy AHP to Risk Management in Design, Construction, and Operation of Tunnel Projects (Case Studies: Resalat Tunnel)
,”
Int. J. Adv. Manuf. Technol.
,
53
(
5–8
), pp.
789
798
.
46.
Li
,
F.
,
Zhu
,
Q.
, and
Liang
,
L.
,
2018
, “
Allocating a Fixed Cost Based on a DEA-Game Cross Efficiency Approach
,”
Expert Syst. Appl.
,
96
, pp.
196
207
.
47.
Lin
,
C. J.
, and
Wu
,
W. W.
,
2008
, “
A Causal Analytical Method for Group Decision-Making Under Fuzzy Environment
,”
Expert Syst. Appl.
,
34
(
1
), pp.
205
213
.
48.
Huang
,
C. Y.
,
Shyu
,
J. Z.
, and
Tzeng
,
G. H.
,
2007
, “
Reconfiguring the Innovation Policy Portfolios for Taiwan’s SIP Mall Industry
,”
Technovation
,
27
(
12
), pp.
744
765
.
49.
Jing
,
L. T.
,
Peng
,
X.
,
Li
,
J. Q.
,
Wang
,
J. X.
, and
Jiang
,
S. F.
,
2018
, “
A Decision Approach With Multiple Interactive Qualitative Objectives for Product Conceptual Schemes Based on Noncooperative-Cooperative Game Theory
,”
Adv. Eng. Inform.
,
38
, pp.
581
592
.
50.
Jiang
,
S. F.
,
Li
,
J. Q.
, and
Mao
,
Z. F.
,
2015
, “
Research on the Propagation Path of Function Change in Product Conceptual Design
,”
Adv. Mech. Eng.
,
8
(
10
), pp.
1
15
.
51.
Annamdas
,
K. K.
, and
Rao
,
S. S.
,
2009
, “
Multi-Objective Optimization of Engineering Systems Using Game Theory and Particle Swarm Optimization
,”
Eng. Optim.
,
41
(
8
), pp.
737
752
.
You do not currently have access to this content.