Smooth continuous spiral tool paths are preferable for computer numerical control (CNC) machining due to their good kinematic and dynamic characteristics. This paper presents a new method to generate spiral tool paths for the direct three-axis CNC machining of the measured cloud of point. In the proposed method, inspired by the Archimedean spiral passing through the radial lines in a circle, 3D radial curves on the cloud of point are introduced, and how to construct the radial curves on the complex cloud of point is discussed in detail and then a practical and effective radial curve construction method of integrating boundary extraction, region triangulation, mesh mapping, and point projection is proposed. On the basis of the radial curves, the spiral tool path can be generated nicely by interpolating the radial curves using a spiral curve. Besides, the method of identifying and eliminating the overcuts and undercuts in the spiral tool path resulting from the interpolation error is also presented for good surface quality. Finally, several examples are given to validate the proposed method and to show its potential in practical applications when quality parametric models and mesh models are not available.

References

1.
OuYang
,
D.
,
Nest
,
B. A. V.
, and
Feng
,
H. Y.
,
2005
, “
Determining Gouge-Free Ball-End Mills for 3D Surface Machining From Point Cloud Data
,”
Robot. Cim. Int. Manuf.
,
21
(
4–5
), pp.
338
345
.
2.
Peng
,
Y. H.
, and
Yin
,
Z. W.
,
2007
, “
Direct Tool Path Regeneration for Physical Object Modification From Digitized Points in Reverse Engineering
,”
Int. J. Adv. Manuf. Technol.
,
33
(
11–12
), pp.
1204
1211
.
3.
Yang
,
P.
, and
Qian
,
X.
,
2008
, “
Adaptive Slicing of Moving Least Squares Surfaces: Toward Direct Manufacturing of Point Set Surfaces
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
3
), p.
031003
.
4.
Li
,
Y. Q.
, and
Ni
,
J.
,
2009
, “
Constraints Based Nonrigid Registration for 2D Blade Profile Reconstruction in Reverse Engineering
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
3
), p.
031005
.
5.
Xu
,
J. T.
,
Hou
,
W. B.
,
Sun
,
Y. W.
, and
Lee
,
Y. S.
,
2018
, “
PLSP Based Layered Contour Generation From Point Cloud for Additive Manufacturing
,”
Robot. Cim. Int. Manuf.
,
49
, pp.
1
12
.
6.
Zhou
,
X.
,
Zhang
,
D. H.
,
Wu
,
B. H.
,
Yang
,
J. H.
, and
Ming
,
L.
, “
Spiral Tool Path Planning for Five-Axis Machining of Multi-Patch Island Based on Point Model
,”
International Conference on Manufacturing Automation
,
Hong Kong, China
,
Dec. 13–15, 2010
, pp.
139
142
.
7.
Zhang
,
D. D.
,
Yang
,
P. H.
, and
Qian
,
X. P.
,
2009
, “
Adaptive NC Path Generation From Massive Point Data With Bounded Error
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011001
.
8.
Lasemi
,
A.
,
Xue
,
D.
, and
Gu
,
P.
,
2010
, “
Recent Development in CNC Machining of Freeform Surfaces: A State-of-the-Art Review
,”
Comput. Aided Des.
,
42
(
7
), pp.
641
654
.
9.
Makhanov
,
S. S.
,
2010
, “
Adaptable Geometric Patterns for Five-Axis Machining: A Survey
,”
Int. J. Adv. Manuf. Technol.
,
47
(
9–12
), pp.
1167
1208
.
10.
Xu
,
J. T.
,
Sun
,
Y. W.
, and
Zhang
,
L.
,
2015
, “
A Mapping-Based Approach to Eliminating Self-Intersection of Offset Paths on Mesh Surfaces for CNC Machining
,”
Comput. Aided Des.
,
62
, pp.
131
142
.
11.
Zhang
,
Y. J.
, and
Yu
,
M. R.
,
2012
, “
Computing Offsets of Point Clouds Using Direct Point Offsets for Tool-Path Generation
,”
Proc. IME B J. Eng. Manuf.
,
226
(
1
), pp.
52
65
.
12.
Liu
,
W.
,
Zhou
,
L. S.
, and
An
,
L. L.
,
2012
, “
Constant Scallop-Height Tool Path Generation for Three-Axis Discrete Data Points Machining
,”
Int. J. Adv. Manuf. Technol.
,
63
(
1
), pp.
137
146
.
13.
Lin
,
A. C.
, and
Liu
,
H. T.
,
1998
, “
Automatic Generation of NC Cutter Path From Massive Data Points
,”
Comput. Aided Des.
,
30
(
1–4
), pp.
77
90
.
14.
Chuang
,
C. M.
,
Chen
,
C. Y.
, and
Yau
,
H. T.
,
2002
, “
A Reverse Engineering Approach to Generating Interference-Free Tool Paths in Three-Axis Machining From Scanned Data of Physical Models
,”
Int. J. Adv. Manuf. Technol.
,
19
(
1
), pp.
23
31
.
15.
Chui
,
K. L.
,
Chiu
,
W. K.
, and
Yu
,
K. M.
,
2008
, “
Direct 5-Axis Tool-Path Generation From Point Cloud Input Using 3D Biarc Fitting
,”
Robot. Cim. Int. Manuf.
,
24
(
2
), pp.
270
286
.
16.
Huang
,
Y. B.
,
Wang
,
Q. F.
,
Huang
,
Z. D.
, and
Wu
,
J. J.
,
2006
, “
Tool-Path Generation From Densely Scattered Measure Points Based on CQEM
,”
Int. J. Adv. Manuf. Technol.
,
27
(
9–10
), pp.
945
950
.
17.
Xu
,
J. T.
,
Sun
,
Y. W.
, and
Wang
,
S. K.
,
2013
, “
Tool Path Generation by Offsetting Curves on Polyhedral Surfaces Based on Mesh Flattening
,”
Int. J. Adv. Manuf. Technol.
,
64
(
9–12
), pp.
1201
1212
.
18.
Sun
,
Y. W.
,
Guo
,
D. M.
, and
Jia
,
Z. Y.
,
2006
, “
Spiral Cutting Operation Strategy for Machining of Sculptured Surfaces by Conformal Map Approach
,”
J. Mater. Process. Technol.
,
180
(
1–3
), pp.
74
82
.
19.
Piazza
,
E.
,
Romanoni
,
A.
, and
Matteucci
,
M.
,
2018
, “
Real-Time CPU-Based Large-Scale Three-Dimensional Mesh Reconstruction
,”
IEEE Robot. Auto. Lett.
,
3
(
3
), pp.
1584
1591
.
20.
Sang
,
C. P.
, and
Yun
,
C. C.
,
2003
, “
Tool-Path Generation From Measured Data
,”
Comput. Aided Des.
,
35
(
5
), pp.
467
475
.
21.
Feng
,
H. Y.
, and
Teng
,
Z. J.
,
2005
, “
Iso-Planar Piecewise Linear NC Tool Path Generation From Discrete Measured Data Points
,”
Comput. Aided Des.
,
37
(
1
), pp.
55
64
.
22.
Kayal
,
P.
,
2009
, “
Inverse Offset Method for Adaptive Cutter Path Generation From Point-Based Surface
,”
Int. J. CAD/CAM
,
7
(
1
), pp.
1
18
.
23.
Yau
,
H. T.
, and
Hsu
,
C. Y.
,
2009
, “
Generating NC Tool Paths From Random Scanned Data Using Point-Based Models
,”
Int. J. Adv. Manuf. Technol.
,
41
(
9–10
), pp.
897
907
.
24.
Zhang
,
Y. J.
, and
Ge
,
L. L.
,
2011
, “
Adaptive Tool-Path Generation on Point-Sampled Surfaces
,”
Precis. Eng.
,
35
(
4
), pp.
591
601
.
25.
Liu
,
Y.
,
Xia
,
S. T.
, and
Qian
,
X. P.
,
2012
, “
Direct NC Path Generation: From Discrete Points to Continuous Spline Paths
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
3
), p.
031002
.
26.
Lee
,
E.
,
2003
, “
Contour Offset Approach to Spiral Toolpath Generation With Constant Scallop Height
,”
Comput. Aided Des.
,
35
(
6
), pp.
511
518
.
27.
Zhang
,
K.
, and
Tang
,
K.
,
2014
, “
An Efficient Greedy Strategy for Five-Axis Tool Path Generation on Dense Triangular Mesh
,”
Int. J. Adv. Manuf. Technol.
,
74
(
9–12
), pp.
1539
1550
.
28.
Zou
,
Q.
, and
Zhao
,
J. B.
,
2013
, “
Iso-Parametric Tool-Path Planning for Point Clouds
,”
Comput. Aided Des.
,
45
(
11
), pp.
1459
1468
.
29.
Xu
,
J. T.
,
Ji Yukun
,
S.
, and
Sun
,
Y.
,
2018
, “
Spiral Tool Path Generation Method on Mesh Surfaces Guided by Radial Curves
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071016
.
30.
Ren
,
F.
,
Sun
,
Y.
, and
Guo
,
D.
,
2009
, “
Combined Reparameterization-Based Spiral Toolpath Generation for Five-Axis Sculptured Surface Machining
,”
Int. J. Adv. Manuf. Technol.
,
40
(
7–8
), pp.
760
768
.
31.
Sloan
,
S. W.
,
1987
, “
A Fast Algorithm for Constructing Delaunay Triangulations in the Plane
,”
Adv. Eng. Softw.
,
9
(
1
), pp.
34
55
.
32.
Azariadis
,
P. N.
, and
Sapidis
,
N. S.
,
2005
, “
Drawing Curves Onto a Cloud of Points for Point-Based Modelling
,”
Comput. Aided Des.
,
37
(
1
), pp.
109
122
.
33.
Zhao
,
H. S.
,
Chen
,
B. Q.
,
Gu
,
F. L.
,
Huang
,
Q. X.
,
Garcia
,
J.
,
Yong
,
C.
,
Tu
,
C.
,
Benes
,
B.
,
Hao
,
Z.
, and
Cohen-Or
,
D.
,
2016
, “
Connected Fermat Spirals for Layered Fabrication
,”
ACM Trans. Graph.
,
35
(
4
), p.
100
.
34.
Zhao
,
H. S.
,
Zhang
,
H.
,
Xin
,
S. Q.
,
Deng
,
Y. M.
,
Tu
,
C. H.
,
Wang
,
W. P.
,
Cohen-Or
,
D.
, and
Chen
,
B. Q.
,
2018
, “
DSCarver: Decompose-and-Spiral-Carve for Subtractive Manufacturing
,”
ACM Trans. Graph.
,
37
(
4
), p.
137
.
You do not currently have access to this content.