Abstract

Efficient modeling of uncertainty introduced by the manufacturing process is critical in the design of turbine engine components. In this study, a stochastic multiscale modeling framework is developed to efficiently account for the geometric uncertainty associated with the manufacturing process to accurately predict the performance of engine components. Multiple efficient statistic tools are integrated into the proposed framework. Specifically, a semivariogram analysis procedure is proposed to quantify spatial variability of the uncertain geometric parameters based on a set of manufactured specimens. Karhunen–Loeve expansion is utilized to create a set of correlated random variables from the uncertainty data obtained by variogram analysis. A detailed finite element model of the component is created that accounts for the uncertainties quantified by these correlated random variables. A stochastic upscaling method is then developed to form a simplified model that can represent this detailed model with high accuracy under uncertainties. Specifically, a parametric model generation process is developed to represent the detailed model using Bezier curves and the uncertainties are upscaled to the parameters of this parametric representation. The results of the simulations are then validated with real experimental results. The application results show that the proposed framework effectively captures the geometric uncertainties introduced by manufacturing while providing accurate predictions under uncertainties.

References

1.
Garzon
,
V. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference
, pp.
1199
1213
.
2.
Carnevale
,
M.
,
Montomoli
,
F.
,
D’Ammaro
,
A.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2013
, “
Uncertainty Quantification: A Stochastic Method for Heat Transfer Prediction Using LES
,”
ASME J. Turbomach.
,
135
(
5
), p.
051021
.
3.
Javed
,
A.
,
Pecnik
,
R.
, and
Van Buijtenen
,
J. P.
,
2016
, “
Optimization of a Centrifugal Compressor Impeller for Robustness to Manufacturing Uncertainties
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112101
.
4.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2012
, “
Impact of Manufacturing Variability on Multistage High-Pressure Compressor Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
112601
.
5.
Thakur
,
N.
,
Keane
,
A. J.
,
Nair
,
P. B.
, and
Rao
,
A. R.
,
2010
, “
Probabilistic Life Assessment of Gas Turbine Blades
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121005
.
6.
Choi
,
S.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
,
2006
,
Reliability-Based Structural Design
,
Springer
,
London
.
7.
Curran
,
P. J.
,
1988
, “
The Semivariogram in Remote Sensing: An Introduction
,”
Remote Sens. Environ.
,
24
(
3
), pp.
493
507
.
8.
Jian
,
X.
,
Olea
,
R. A.
, and
Yu
,
Y. S.
,
1996
, “
Semivariogram Modeling by Weighted Least Squares
,”
Comput. Geosci.
,
22
(
4
), pp.
387
397
.
9.
Loeve
,
M.
,
1978
,
Probability Theory II
,
Springer-Verlag
,
New York
.
10.
Gorguluarslan
,
R.
, and
Choi
,
S. K.
,
2014
, “
A Simulation-Based Upscaling Technique for Multiscale Modeling of Engineering Systems Under Uncertainty
,”
Int. J. Multiscale Comput. Eng.
,
12
(
6
), pp.
549
566
.
11.
McKeand
,
A. M.
,
Gorguluarslan
,
R. M.
, and
Choi
,
S. K.
,
2018
, “
A Stochastic Approach for Performance Prediction of Aircraft Engine Components Under Manufacturing Uncertainty
,” ASME IDETC,
Quebec City, Quebec
,
Aug. 26–29
,
ASME
Paper No. DETC2018-85415.
12.
Gorguluarslan
,
R. M.
,
Choi
,
S. K.
, and
Saldana
,
C. J.
,
2017
, “
Uncertainty Quantification and Validation of 3D Lattice Scaffolds for Computer-Aided Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
71
, pp.
428
440
.
13.
Christakos
,
G.
,
1992
,
Random Field Models in Earth Sciences
,
Academic Press, Inc.
,
San Diego, CA
.
14.
Arnst
,
M.
,
Ghanem
,
R.
, and
Soize
,
C.
,
2010
, “
Identification of Bayesian Posteriors for Coefficients of Chaos Expansions
,”
J. Comput. Phys.
,
229
(
9
), pp.
3134
3154
.
15.
Chapra
,
S. C.
, and
Cnale
,
R. P.
,
2010
,
Numerical Methods for Engineerings
,
McGraw-Hill
,
New York
.
16.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Element Analysis: A Spectral Approach
,
Springer-Verlag
,
New York
.
17.
Arnst
,
M.
, and
Ghanem
,
R.
,
2008
, “
Probabilistic Equivalence and Stochastic Model Reduction in Multiscale Analysis
,”
Comput. Methods Appl. Mech. Eng.
197
(
43-44
), pp.
3584
3592
.
18.
Gorguluarslan
,
R. M.
,
Park
,
S. I.
,
Rosen
,
D. W.
, and
Choi
,
S.-K.
,
2015
, “
A Multilevel Upscaling Method for Material Characterization of Additively Manufactured Part Under Uncertainties
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111701
.
19.
Talenti
,
G.
,
1987
, “
Recovering a Function From a Finite Number of Moments
,”
Inverse Probl.
,
3
(
3
), pp.
501
.
20.
Fasino
,
D.
,
1995
, “
Spectral Properties of Hankel Matrices and Numerical Solutions of Finite Moment Problems
,”
J. Comput. Appl. Math.
,
65
(
1–3
), pp.
145
155
.
21.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P.
, and
Huang
,
H. Z.
,
2011
, “
Toward a Better Understanding of Model Validation Metrics
,”
ASME J. Mech. Des.
133
(
7
), p.
071005
.
22.
Jung
,
B. C.
,
Park
,
J.
,
Oh
,
H.
,
Kim
,
J.
, and
Youn
,
B. D.
,
2015
, “
A Framework of Model Validation and Virutal Product Qualification With Limited Experimental Data Based on Statistical Inference
,”
Struct. Multidiscip. Optim.
51
(
3
), pp.
573
583
.
23.
Cong
,
F.
,
Chen
,
J.
, and
Pan
,
Y.
,
2010
, “
Kolmogorov-Smirnov Test for Rolling Bearing Performance Degradation Assessment and Prognosis
,”
J. Vib. Control
,
17
(
9
), pp.
1337
1347
.
24.
Samareh
,
J. A.
,
2001
, “
Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization
,”
AIAA J.
,
39
(
5
), pp.
877
884
.
25.
Mohaghegh
,
K.
,
Sadeghi
,
M. H.
, and
Abdullah
,
A.
,
2007
, “
Reverse Engineering of Turbine Blades Based on Design Intent
,”
Int. J. Adv. Manuf. Technol.
,
32
(
9–10
), pp.
1009
1020
.
26.
Nemnem
,
A. F.
,
Turner
,
M. G.
,
Siddappaji
,
K.
, and
Galbraith
,
M.
,
2014
, “
A Smooth Curvature-Defined Meanline Section Option for a General Turbomachinery Geometry Generator
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
, (p.
V02BT39A026
).
27.
Farin
,
G.
,
1993
,
Curves and Surfaces for Computer Aided Geometric Design
, 2nd ed.,
Academic Press
,
New York
.
28.
Pérez-Arribas
,
F.
, and
Trejo-Vargas
,
I.
,
2012
, “
Computer-Aided Design of Horizontal Axis Turbine Blades
,”
Renew. Energy
,
44
, pp.
252
260
.
29.
Giovannini
,
M.
,
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2016
, “
Scaling Three-Dimensional Low-Pressure Turbine Blades for Low-Speed Testing
,”
ASME J. Turbomach.
,
138
(
11
), p.
111001
.
30.
Vucina
,
D.
,
Lozina
,
Z.
, and
Pehnec
,
I.
,
2008
, July, “
A Compact Parameterization for Shape Optimization of Aerofoils
,”
Proceedings of the World Congress on Engineering
,
1
, pp.
111
116
.
31.
Lee
,
K.
,
1999
,
Principles of CAD/CAM/CAE Systems
,
Addison Wesley
,
Reading, MA
.
32.
GrabCAD
,
Turbine Blade From a Rolls Royce Pegasus Turbofan Engine
. https://grabcad.com/library/turbine-blade–12
33.
Webster
,
R.
, and
Oliver
,
M.
,
2001
,
Geostatistics for Environmental Scientists
,
Wiley & Sons
,
New York
.
34.
Lee
,
D. T.
, and
Schachter
,
B. J.
,
1980
, “
Two Algorithms for Constructing a Delaunay Triangulation
,”
Int. J. Comput. Inf. Sci.
,
9
(
3
), pp.
219
242
.
35.
Shewchuk
,
R.
, and
Jonathan
,
2002
, “
Delaunay Refinement Algorithms for Triangular Mesh Generation
,”
Comput. Geom.
22
(
1–3
), pp.
21
74
.
36.
Miller
,
G.
,
Talmor
,
D.
,
Teng
,
S.-H.
,
Walkington
,
N.
, and
Wang
,
H.
,
1996
, “
Control Volume Meshes Using Sphere Packing: Generation, Refinement and Coarsening
,”
Proceedings of the Fifth International Meshing Roundtable
, pp.
47
61
.
37.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Sondergaard
,
J.
,
2002
,
A MATLAB Kriging Toolbox
,
Technical University of Denmark
.
You do not currently have access to this content.