A segmentation and model-reconstruction algorithm is proposed based on polynomial approximation and on a new version of the “region growing” methodology. First, an initial partition is calculated on the basis of differential-geometric properties of the range image. Then, the first merging procedure is applied (“merge with constraints”) aiming at correctly identifying principal surfaces of the model. It examines all possible mergers of regions and selects those satisfying strict compatibility constraints. The second merging procedure relaxes these constraints to produce the “extended” regions and surfaces of the final segmentation. Theoretical work is presented proving the consistency of these merging procedures. Finally, application of the algorithm on industrial data is presented demonstrating the efficiency of the proposed methodology.

1.
Va`rady
,
T.
,
Martin
,
R. R.
, and
Cox
,
J.
,
1997
, “
Reverse Engineering of Geometric Models-an Introduction
,”
Comput.-Aided Des.
,
29
(
4
), pp.
255
267
.
2.
Sankar
,
B.
, and
Menc
,
C. H.
,
1991
, “
Smooth Surface Approximation and Reverse Engineering
,”
Comput.-Aided Des.
,
23
(
9
), pp.
623
628
.
3.
Besl, P. J., 1988, Surfaces in Range Image Understanding, Springer-Verlag, New York.
4.
Sapidis
,
N.
, and
Besl
,
P. J.
,
1995
, “
Direct Construction of Polynomial Surfaces from Dense Range Images Through Region Growing
,”
ACM Trans. Graphics
,
14
(
2
), pp.
171
200
.
5.
Milgrim, B. L., and Bjorklund, C. M., 1980, Range Image Processing Planar Surface Extraction, Proc. 2nd Int. Conf. on Pattern Recognition, pp. 912–919, Florida.
6.
Henderson
,
T. C.
,
1983
, “
Efficient 3D Object Representation for Industrial Vision Systems
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
5
(
6
), pp.
609
917
.
7.
Sethi, K., and Jayaramamurthy, S. N., 1984, “Surface Classification Using Characteristic Contours,” Proc. 7th Int. Conf. Pattern Recognition, pp. 438–440, Canada.
8.
Taylor
,
R. W.
,
Savini
,
M.
, and
Reeves
,
A. P.
,
1989
, “
Fast Segmentation of Range Imagery into Planar Regions
,”
Comput. Vis. Graph. Image Process.
,
45
, pp.
42
60
.
9.
Besl
,
P. J.
, and
Jain
,
R. C.
,
1988
, “
Segmentation Through Variable Order Surface Fitting
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
10
(
2
), pp.
167
192
.
10.
Leonardis
,
A.
,
Gupta
,
A.
, and
Bajcsy
,
R.
,
1995
, “
Segmentation of Range Images as the Search for Geometric Parametric Models
,”
International Journal of Computer Vision
,
14
, pp.
253
277
.
11.
Leonardis
,
A.
,
Jaklic
,
A.
, and
Solina
,
F.
,
1997
, “
Superquadrics for Segmenting and Modeling Range Data
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
19
(
11
), pp.
1289
1295
.
12.
Milroy
,
M. J.
,
Bradley
,
C.
, and
Vickers
,
G. W.
,
1997
, “
Segmentation of a Wrap-around Model Using an Active Contour
,”
Comput.-Aided Des.
,
29
(
4
), pp.
299
319
.
13.
Va`rady
,
T.
,
Martin
,
R. R.
, and
Cox
,
J.
,
1997
, “
Reverse Engineering of Geometric Models
,”
Comput.-Aided Des.
,
29
(
4
), pp.
253
254
.
14.
Edelsbrunner
,
H.
, and
Muke
,
E. P.
,
1994
, “
Three-Dimensional Alpha Shapes
,”
ACM Trans. on Computer Graphics
,
13
(
1
), pp.
43
70
.
15.
Melkemi
,
M.
, and
Djebali
,
M.
,
2000
, “
Computing the Shape of a Planar Points Set
,”
Pattern Recogn.
,
33
, pp.
1423
1436
.
16.
Horowitz, S. L., and Pavlidis, T., 1974, “Picture Segmentation by Directed Split and Merge Procedure,” Proc. of the 2nd Intern. Joint Conference on Pattern Recognition, pp. 424–433.
17.
Canny, J. F., 1983, Finding Edges and Lines in Images, Technical Report, MIT Artificial Intelligence Laboratory, 720.
18.
Champ, Peter, 1995, REPLICA Installation Manual v3.0, 3D Scanners Ltd. Vancouver, September.
You do not currently have access to this content.