A large aircraft contains thousands of transport elements, such as tubes, ducts, and wires. Their shape is subject to many constraints, some extrinsic (e.g., obstacle clearance) and others intrinsic (e.g., legal bend angles). A key problem is to design a feasible route that is optimal (e.g., as short as possible). We present an algorithm specialized for metal tubing that allows the user to sketch a route using constraint objects. The user arranges the constraint objects and the system fills in an optimal tube. Trade-offs can be explored rapidly, in terms of quantities of direct engineering interest. This effectively automates a tedious manual design process, saving time and money and producing superior designs. The algorithm has been implemented and tested in a production environment.

1.
Jain
,
D.
,
Unemori
,
A.
,
Chatterjee
,
M.
, and
Thangam
,
N.
,
1992
, “
A Knowledge-Based Automatic Pipe Routing System
,”
ASME Comput. Eng.
,
1
, pp.
127
132
.
2.
Mitsuta, T., Wada, Y., Kobayashi, Y., and Kiguchi, T., 1986, “A Knowledge-Based Approach to Routing Problems in Industrial Plant Design,” In 6th International Workshop on Expert Systems and Applications, pp. 237–255, Avignon, France.
3.
Zhu, D., and Latombe, J.-C., 1991, “Mechanization of Spatial Reasoning for Automatic Pipe Layout Design,” AI EDAM 5(1), pp. 1–20.
4.
Zhu, D., and Latombe, J. C., 1991, Pipe Routing=Path Planning (With Many Constraints). In Proc. IEEE Intl. Conf. Robotics and Automation, Sacramento, CA.
5.
Bohle
,
D.
,
Jakobs
,
G.
,
Ha¨nisch
,
K.
, and
Kalbitz
,
H.
,
1982
, “
Rechnerunterstu¨tzung bei der Rohrleitungs-Konstruktion im 3D-Raum. (Computer-assisted pipe routing in 3-D space.)
Chem.-Ing.-Tech.
,
54
(
3
), pp.
241
246
. (In German.)
6.
Satyanarayana, M. V. V., Rao, A. A., et al. 1992, “An Automated Pipe-Route Planner in Three Dimensional Plant Layout Design,” Proc. CompEuro ’92, Computer Systems and Software Engineering, IEEE-0-8186-2760-3/92.
7.
Wangdahl
,
G. E.
,
Pollock
,
S. M.
, and
Woodward
,
J. B.
,
1974
, “
Minimum-trajectory Pipe Routing
,”
J. Ship Res.
,
18
(
1
), pp.
46
49
, March.
8.
OptiPlant, 2002, by ASD Global, Inc. (USA). http://www.asdglobal.com.
9.
Szykman
,
S.
, and
Cagan
,
J.
,
1996
, “
Synthesis of Optimal Non-Orthogonal Routes
,”
ASME J. Mech. Des.
,
118
(
3
), pp.
419
424
.
10.
Conru, A. B., and Cutkosky, M. R., 1993, “Computational Support for Interactive Cable Harness Routing and Design,” ASME DE-Vol. 65-1, Adv. in Design Automation, Vol. 1, pp. 551–558.
11.
Conru, A. B., 1994, “A Genetic Approach to the Cable Harness Routing Problem,” In Proc. First IEEE Conf. on Evolutionary Comp., IEEE 0-7803-1899-4/94, pp. 200–205, Orlando, FL.
12.
Latombe, Jean-Claude. Robot Motion Planning. Kluwer International Series in Engineering and Comp. Sci., 124, 1990.
13.
J.-P. Laumond (Ed.), 1998, Robot Motion Planning and Control. Previously published as “Lecture Notes in Control and Information Sciences 229,” Springer, SIBN 3-540-76219-1, 343p. Out of print but available free of charge at http://www.laas.fr/jpl/book-toc.html.
14.
Sussman, H. J., 1995, “Shortest Three-dimensional Paths with a Prescribed Curvature Bound,” In Proc. 34th IEEE Conf. Decision and Control, New Orleans, LA, Dec.
15.
Laumond
,
J.-P.
,
Jacobs
,
P. E.
,
Taix
,
M.
, and
Murray
,
R. M.
,
1994
, “
A Motion Planner for Nonholonomic Mobile Robots
,”
IEEE Trans. Rob. Autom.
,
10
(
5
), pp.
577
593
, October.
16.
Quinlan, S., and Khatib, O., 1993, “Elastic bands: Connecting path planning and control,” Proc. IEEE Intl. Conf. Robotics and Automation.
17.
Wei, Y. F., and Thornton, A. C., 2000, “Tube Production and Assembly Systems: The Impact of Compliance and Variability on Yield,” In Proc. ASME Des. Automation Conf, DETC2000/DAC-14271, Sep.
18.
TubeExpert Corp. (Ger.) http://www.tubeexpert.com, 2002.
19.
Eagle Precision Technology, Inc. (USA) http:/www.eaglept.com, 2002.
20.
CATIA by Dassault Systemes (France) http://www.dsweb.com, 2002.
21.
XpresRoute and PathXpres by Solid Edge, Inc. (USA) http://www.solid-edge.com, 2002.
22.
Das
,
I.
, and
Dennis
,
J. E.
,
1998
, “
Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems
,”
SIAM J. Optim.
,
8
(
3
), pp.
631
657
.
23.
Audet, C., and Dennis J. E., Jr., 1999, “Pattern Search Algorithms for Mixed-variable Programming,” Technical Report TR99-02, Dept. of Comp. and App. Math., Rice University.
24.
Goux, J. P., and Leyffer, S., 2001, Solving Large MINLPs on Computational Grids. Tech. Report NA/200, U. Dundee.
25.
Duda, R. O., and Hart, P. E., 1973, Pattern Classification and Scene Analysis. Wiley, New York.
26.
Friedman, J. H., 1990, “Multivariate Adaptive Regression Splines,” PUB 4960, Tech. Rep. 102, Stanford Linear Accelerator Center, Stanford University.
27.
Orr
,
M.
,
Takezawa
,
K.
,
Hallam
,
J.
et al.
2000
, “
Combining Regression Trees and Radial Basis Function Networks
,”
Int. J. Neural Syst.
,
10
(
6
), pp.
453
465
.
28.
Stanford Business Software, Inc. (USA) http://www.sbsi-sol-optimize.com, 2002.
29.
Gill, P. E., Murray, W., and Wright, M. H., 1981, Practical Optimization. Academic Press, London.
30.
Concert Technology by ILOG, Inc. (USA) http://www.ilog.com, 2002.
31.
EZMod by Modellium Corp. (France) http://www.modellium.com, 2002.
32.
Agarwal
,
P. K.
, and
Wang
,
H.
,
2001
, “
Approximation Algorithms for Curvature-constrained Shortest Paths
,”
SIAM J. Comput.
,
30
(
6
), pp.
1739
1772
.
33.
Dubins
,
L. E.
,
1957
, “
On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents
,”
Am. J. Math.
,
79
, pp.
497
516
.
34.
Venditelli
,
M.
,
Laumond
,
J. P.
, and
Nissoux
,
C.
,
1999
, “
Obstacle Distance for Car-like Robots
,”
IEEE Trans. Rob. Autom.
,
15
(
4
), pp.
678
691
.
35.
Betts
,
J. T.
, and
Huffman
,
W. P.
,
1993
, “
Path-Constrained Trajectory Optimization Using Sparse Sequential Quadratic Programming
,”
J. Guid. Control Dyn.
,
16
(
1
), pp.
59
68
, January-February.
36.
Betts
,
J. T.
,
1998
, “
Survey of Numerical Methods for Trajectory Optimization
,”
AIAA J., Guidance, Control, Dynam.
21
(
2
), pp.
193
207
, March-April.
37.
Shald, S. M., 1997, “Arcline Guidance,” Master’s thesis, University of Minnesota.
38.
Betts, John, and Frank, Paul, OPTLIB and SOCS Math & Information Software, the Boeing Company, http://www.boeing.com/phantom/math_infosw, 2002.
39.
Betts, J. T., and Frank, P. D., 2001, “OPTLIB: Optimization and Optimal Control Software Library,” Boeing Information and Support Services—Mathematics and Computing Technology Report M&CT-TECH-01-014, The Boeing Company, P.O. Box 3707, Seattle, WA 98124-2207.
40.
Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R., 2000, “Adaptively Sampled Distance Fields: A General Representation of Shape for Computer Graphics,” Mitsubishi Electric Research Laboratory, TR2002-15, Cambridge, MA, April.
You do not currently have access to this content.