An approach to modeling heterogeneous objects as multidimensional point sets with multiple attributes (hypervolumes) is presented. Attributes given at each point represent object properties of arbitrary nature (material, physical, etc.). A proposed theoretical framework is based on a hybrid model of geometry and attributes combining a cellular representation and a functionally based constructive representation of dimensionally non-homogeneous entities. Hypervolume model components such as objects, operations and relations are introduced and outlined. We present examples of modeling a multi-layer geological structure with cavities and wells, time-dependent adaptive mesh generation, and conversion of a 3D implicit complex to the cellular representation.

1.
Pasko
,
A.
,
Adzhiev
,
V.
,
Schmitt
,
B.
, and
Schlick
,
C.
, 2001, “Constructive Hypervolume Modelling,” Graphical Models, special issue on Volume Modeling, 63(6), pp. 413–442.
2.
Pasko, A., Adzhiev, V., and Schmitt, B., 2001, “Constructive Hypervolume Modelling,” Technical Report TR-NCCA-2001-01, National Centre for Computer Animation, Bournemouth University, UK, ISBN 1-85899-123-4, p. 34 URL:http://www.cis.k.hosei.ac.jp/∼F-rep/BTR001.pdf
3.
Kumar, V., and Dutta, D., 1997, “An Approach to Modeling Multi-material Objects,” Fourth Symposium on Solid Modeling and Applications, ACM SIGGRAPH, pp. 336–345.
4.
Kumar
,
V.
,
Burns
,
D.
,
Dutta
,
D.
, and
Hoffmann
,
C.
,
1999
, “
A Framework for Object Modeling
,”
Comput.-Aided Des.
,
31
(
9
), pp.
541
556
.
5.
Shin
,
K.
, and
Dutta
,
D.
,
2001
, “
Constructive Representation of Heterogeneous Objects
,”
J. Comput. Inf. Sci. Eng.
1
(
3
), pp.
205
217
.
6.
Chen
,
M.
, and
Tucker
,
J.
, 2000, “Constructive Volume Geometry,” Computer Graphics Forum, 19(4), pp. 281–293.
7.
Jackson
,
T. R.
,
Liu
,
H.
,
Patrikalakis
,
N. M.
,
Sachs
,
E. M.
, and
Cima
,
M. J.
,
1999
, “
Modeling and Designing Functionally Graded Material Components for Fabrication with Local Composition Control
,”
Mater. Des.
,
20
(
2/3
), pp.
63
75
.
8.
Martin, W., and Cohen, E., 2001, “Representation and Extraction of Volumetric Attributes Using Trivariate Splines: A Mathematical Framework,” Sixth ACM Symposium on Solid Modeling and Applications, D. Anderson, K. Lee (Eds.), ACM Press, pp. 234–240.
9.
Park, S. M., Crawford, R., and Beaman, J., 2001, “Volumetric Multitexturing for Functionally Gradient Material Representation,” Sixth ACM Symposium on Solid Modeling and Applications, D. Anderson, K. Lee (Eds.), ACM Press, pp. 216–224.
10.
Pasko
,
A.
,
Adzhiev
,
V.
,
Sourin
,
A.
, and
Savchenko
,
V.
,
1995
, “
Function Representation in Geometric Modelling: Concepts Implementation and Applications
,”
Visual Comput.
,
11
(
8
), pp.
429
446
.
11.
Paoluzzi
,
A.
,
Bernardini
,
F.
,
Cattani
,
C.
, and
Ferrucci
,
V.
,
1993
, “
Dimension-independent Modeling with Simplicial Complexes
,”
Meteorol. Mag.
,
12
(
1
), pp.
56
102
.
12.
Arbab
,
F.
,
1990
, “
Set Models and Boolean Operations on Solids and Assemblies
,”
IEEE Computer Graphics and Applications
,
10
(
6
), pp.
76
86
.
13.
Rossignac, J., and O’Connor, M., 1990, “SGC: A Dimension Independent Model for Pointsets with Internal Structures and Incomplete Boundaries,” in Geometric modeling for product engineering, ed. by M. Wozny, J. Turner, K. Preiss.
14.
Armstrong, C., Bowyer, A., Cameron, S. et al., Djinn. 2000, “A Geometric Interface for Solid Modeling,” Information Geometers, Winchester, UK.
15.
Grimm, C. M., and Hughes, J. F., 1995, “Modeling Surfaces of Arbitrary Topology Using Manifolds,” Computer Graphics (SIGGRAPH’95 Proceedings), pp. 359–368.
16.
Hart, J. 1999, “Using the CW-complex to Represent the Topological Structure of Implicit Surfaces and Solids,” Proc. Implicit Surfaces ’99, Eurographics/SIGGRAPH, pp. 107–112.
17.
Kunii
,
T.
, 1999, “Valid Computational Shape Modeling: Design and Implementation,” International Journal of Shape Modeling, 5(2), pp. 123–133.
18.
Ohnrori, K., and Kunii, T., 2001, “Shape Modeling Using Homotopy,” International Conference on Shape Modeling and Applications, IEEE Computer Society, pp. 126–133.
19.
Nielson, G., 2000, “Volume Modeling” in Volume Graphics, ed. by Chen, M., Kaufman, A., Yagel, R., Springer-Verlag, pp. 29–48.
20.
Adzhiev, V., Kazakov, M., Pasko, A. Savchenko, V., 2000, “Hybrid System Architecture for Volume Modeling,” Computers and Graphics, Pergamon Press, 24(1), pp. 67–78.
21.
Rvachev, V., 1982, “Theory of R-functions and Some Applications,” Naukova Dumka, Kiev, (in Russian).
22.
Rvachev
,
V. L.
,
Sheiko
,
T. I.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
, 2001, “Transfinite Interpolation Over Implicitly Defined Sets,” Computer-Aided Geometric Design, 18, pp. 195–220
23.
Shapiro, V., and Tsukanov, I., 1999, “Implicit Functions with Guaranteed Differential Properties,” Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications, ACM, pp. 258–269.
24.
Shapiro
,
V.
, and
Tsukanov
,
I.
,
1999
, “
Meshfree Simulation of Deforming Domains
,”
Comput.-Aided Des.
,
31
(
7
), pp.
459
471
.
25.
Fomenko, A. T., and Kunii, T. L., 1997, Topological Modeling for Visualization, Springer-Verlag, Tokyo and Heidelberg.
26.
Kartasheva
,
E.
, 1999, “Reduction of h-genus Polyhedrons Topology,” International Journal of Shape Modeling, 5(2), pp. 179–194
27.
Pasko
,
A.
,
Pilyugin
,
V.
, and
Pokrovskiy
,
V.
,
1988
, “
Geometric Modeling in the Analysis of Trivariate Functions
,”
Comput. Graphics
,
12
(
3/4
), pp.
457
465
.
28.
Lo¨hner
,
R.
, 1997, “Automatic Unstructured Grid Generators,” Finite Elements in Analysis and Design, 25, pp. 111–134.
29.
Adzhiev, V., Cartwright, R., Fausett, E., Ossipov, A., Pasko, A., and Savchenko, V. 1999, “HyperFun Project: A Framework for Collaborative Multidimensional F-Rep Modeling,” Proc. Implicit Surfaces ’99, Eurographics/ACM SIGGRAPH Workshop, ed. by Hughes, J., Schlick, K., pp. 59–69.
30.
Winter, A., and Chen, M., 2001, “vlib: A Volume Graphics API,” Proceedings of the 2-nd International Workshop on Volume Graphics, New York, pp. 81–90.
31.
Kartasheva
,
E.
, 1997, “Instrumental Data Preparation and Analysis Software for Solution of 3D Mathematical Physics Problems,” Mathematical Modeling Journal, Moscow, 9(7), pp. 113–127 (in Russian).
32.
Alexandrov, P. S., 1947, “Combinatorial Topology,” OGIZ, Gostehizdat, Moscow, (in Russian).
33.
Whitehead, J. H. C., 1949, “Combinational Homotopy,” I. Bull. Amer. Math. Soc., 55, pp. 213–245.
34.
Massey, W. S., 1967, Algebraic Topology: An Introduction, Harcourt, Brace&World, Inc., New York-Chicago-San Francisco-Atlanta.
35.
Fritsch, F., and Piccinini, R. A., 1990, Cellular Structures in Topology, Cambridge University Press, Cambridge.
36.
Handbook of Discrete and Computational Geometry, 1997, ed. by Goodman J., O’Rourke J., CRC Press.
37.
Adzhiev, V., Kartasheva, E., Kunii, T., Pasko, A., and Schmitt, B., 2002, “Cellular-functional Modeling of Heterogeneous Objects,” Proc. ACM Solid Modeling and Applications 2002 Symposium, Saarbryucken, Germany, Ed. Kunwoo Lee, N. Patrikalakis, ACM Press, pp. 192–203.
You do not currently have access to this content.