The extraction and display of iso-surfaces is a standard method for the visualization of volume data sets. In this paper we present a novel approach that utilizes a hierarchy on both the input and the output data. For the generation of a coarse base mesh, we construct a hierarchy of volumes and extract an iso-surface from the coarsest resolution with a standard Marching Cubes algorithm. We additionally apply a simple mesh decimation algorithm to improve the shape of the triangles. We iteratively fit this mesh to the iso-surface at the finer volume levels. To be able to reconstruct fine detail of the iso-surface we thereby adaptively subdivide the mesh. To evenly distribute the vertices of the triangle mesh over the iso-surface and generate a triangle mesh with evenly shaped triangles, we have integrated a mesh smoothing algorithm into the fitting process. The advantage of this approach is that it generates a mesh with subdivision connectivity which can be utilized by several multiresolution algorithms such as compression and progressive transmission. As applications of our method we show how to reconstruct the surface of archeological artifacts and the reconstruction of the brain surface for the simulation of the brain shift phenomenon.

1.
Lorensen, W. E., and Cline, H. E., 1987, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” In ACM Computer Graphics (SIGGRAPH ’87 Proceedings), pp. 163–169.
2.
Certain, A., Popovic´, J., DeRose, T., Duchamp, T., Salesin, D., and Stuetzle, W., 1996, “Interactive Multiresolution Surface Viewing,” In ACM Computer Graphics (SIGGRAPH ’96 Proceedings), pp. 91–98.
3.
Khodakovsky, A., Sweldens, W., and Schro¨der, P., 2000, “Progressive Geometry Compression,” In ACM Computer Graphics (SIGGRAPH ’00 Proceedings), pp. 271–278.
4.
Labsik
,
U.
,
Kobbelt
,
L.
,
Schneider
,
R.
, and
Seidel
,
H.-P.
,
2000
, “
Progressive Transmission of Subdivision Surfaces
,”
Computational Geometry
,
15
, pp.
25
39
.
5.
Zorin, D., Schro¨der, P., and Sweldens, W., 1997, “Interactive Multiresolution Mesh Editing,” In ACM Computer Graphics (SIGGRAPH ’97 Proceedings), pp. 259–268.
6.
Lounsbery
,
M.
,
DeRose
,
T.
, and
Warren
,
J.
,
1997
, “
Multiresolution Analysis for Surfaces of Arbitrary Topological Type
,”
ACM Trans. Graphics
,
16
, pp.
34
73
.
7.
Schro¨der, P., and Sweldens, W., 1995, “Spherical Wavelets: Efficiently Representing Functions on the Sphere,” In ACM Computer Graphics (SIGGRAPH ’95 Proceedings), pp. 161–172.
8.
Montani
,
C.
,
Scateni
,
R.
, and
Scopigno
,
R.
,
1994
, “
A Modified Look-up Table for Implicit Disambiguation of Marching Cubes
,”
Visual Comput.
,
10
, pp.
353
355
.
9.
Nielson, G., and Hamann, B., 1991, “The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes,” In Visualization 1991 Proceedings, pp. 83–91.
10.
Kobbelt, L. P., Botsch, M., Schwanecke, U., and Seidel, H.-P., 2001, “Feature Sensitive Surface Extraction from Volume Data,” In ACM Computer Graphics (SIGGRAPH ’01 Proceedings), pp. 57–66.
11.
Gerstner
,
T.
, and
Pajarola
,
R.
,
2000
, “
Topology Preserving and Controlled Topology Simplifying Multiresolution Isosurface Extraction,” In
IEEE Visualization 2000
,
pp.
259
266
.
12.
Weber, G. H., Kreylos, O., Ligocki, T. J., Hagen, H., Hamann, B., and Joy, K. I., 2001, “Extraction of Crack-free Isosurfaces from Adaptive Mesh Refinement Data,” In Proceedings of VisSym 2001, pp. 25–34.
13.
Westermann
,
R.
,
Kobbelt
,
L.
, and
Ertl
,
T.
,
1999
, “
Real-time Exploration of Regular Volume Data by Adaptive Reconstruction of Isosurfaces
,”
Visual Comput.
,
2
, pp.
100
111
.
14.
Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W., 1995, “Multiresolution Analysis of Arbitrary Meshes,” In ACM Computer Graphics (SIGGRAPH ’95 Proceedings), pp. 173–182.
15.
Lee, A. W. F., Sweldens, W., Schro¨der, P., Cowsar, L., and Dobkin, D., 1998, “MAPS: Multiresolution Adaptive Parameterization of Surfaces,” In ACM Computer Graphics (SIGGRAPH ’98 Proceedings), pp. 95–104.
16.
Kobbelt, L., Vorsatz, J., Labsik, U., and Seidel, H.-P., 1999, “A Shrink Wrapping Approach to Remeshing Polygonal Surfaces,” In Computer Graphics Forum (EUROGRAPHICS ’99 Proceedings), 18, pp. 119–130.
17.
Bertram, M., Duchaineau, M. A., Hamann, B., and Joy, K. I., 2000, “Bicubic Subdivision-surface Wavelets for Large-scale Isosurface Representation and Visualization,” In Visualization 2000 Proceedings, pp. 389–396.
18.
Hoppe, H., 1996, “Progressive Meshes,” In ACM Computer Graphics (SIGGRAPH ’96 Proceedings), pp. 99–108.
19.
Wood, Z., Desbrun, M., Schro¨der, P., and Breen, D., 2000, “Semi-regular Mesh Extraction from Volumes,” In Visualization 2000 Proceedings, pp. 275–282.
20.
Kniss, J., Kindlmann, G., and Hansen, C., 2001, “Interactive Volume Rendering Using Multi-dimensional Transfer Functions and Direct Manipulation Widgets,” In Visualization 2001 Proceedings.
21.
Rezk-Salama, C., Engel, K., Bauer, M., Greiner, G., and Ertl, T., 2000, “Interactive Volume Rendering on Standard PC Graphics Hardware Using Multi-textures and Multi-stage Rasterization,” In Proc. SIGGRAPH/Eurographics Workshop on Graphics Hardware.
22.
Westermann, R., and Ertl, T., 1998, “Efficiently Using Graphics Hardware in Volume Rendering Applications,” In ACM Computer Graphics (SIGGRAPH ’98 Proceedings), pp. 169–179.
23.
Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., and Stuetzle, W., 1994, “Piecewise Smooth Surface Reconstruction,” In ACM Computer Graphics (SIGGRAPH ’94 Proceedings), pp. 295–302.
24.
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W., 1993, “Mesh Optimization,” In ACM Computer Graphics (SIGGRAPH ’93 Proceedings), pp. 19–26.
25.
Sethian, J., 1999, “Level Set Methods and Fast Marching Methods,” Cambridge University Press, UK.
26.
Desbrun, M., Meyer, M., Schro¨der, P., and Barr, A. H., 1999, “Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow,” In ACM Computer Graphics (SIGGRAPH ’99 Proceedings), pp. 317–324.
27.
Taubin, G., 1995, “A Signal Processing Approach to Fair Surface Design,” In ACM Computer Graphics (SIGGRAPH ’95 Proceedings), pp. 351–358.
28.
Bank, R. E., Sherman, A. H., and Weiser, A., “Refinement Algorithms and Data Structures for Regular Local Mesh Refinement,” In R. Stepleman, editor, Scientific Computing, pp. 3–17, Amsterdam, 1983. IMACS/North Holland.
29.
Vasilescu, M., and Terzopoulus, D., 1992, “Adaptive Meshes and Shells: Irregular Triangulation, Discontinuities, and Hierarchical Subdivision,” In Proceedings of Computer Vision and Pattern Recognition conference, pp. 829–832.
30.
Verfu¨rth, R., 1996, “A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques,” Wiley-Teubner.
31.
Miga
,
M.
,
Paulsen
,
K.
,
Hoopes
,
P.
,
Kennedy
,
F.
, and
Hartov
,
A.
,
2000
, “
In vivo Analysis and Modeling of Interstitial Pressure in the Brain Under Surgical Loading
,”
J. Biomech. Eng.
,
122
(
4
), pp.
354
363
.
You do not currently have access to this content.