Abstract

The failure prognosis is crucial for industrial equipment in prognostics and health management field. The vibration signal is the commonly used data for failure prognosis. The conventional prognostic approaches have limitations to handle the features extracted from the vibration signal because of the large data quantity, complex feature relations, and limited degeneration mechanisms. In this paper, a deep learning-based approach is proposed to predict the failure of the complex equipment. To supply plenty of features, three different domain features are extracted from vibration signals. Next, these features are preprocessed and reconstructed by arctangent normalization and data stream, respectively. Finally, a deep neural network, namely, multistream deep recurrent neural network (MS-DRNN) is built to fuse these features for failure target. The presented deep neural network is hybrid, involving recurrent layer, fusion layer, fully connected layer, and linear layer. To benchmark the proposed approach, several prognosis approaches are evaluated with the testing data from six large bearing datasets. Simulation results demonstrate that the prediction performance of the MS-DRNN-based approach is effective and reliable.

References

1.
Tao
,
F.
,
Zuo
,
Y.
,
Xu
,
L. D.
, and
Zhang
,
L.
,
2014
, “
IoT-Based Intelligent Perception and Access of Manufacturing Resource Toward Cloud Manufacturing
,”
IEEE Trans. Ind. Inf.
,
10
(
2
), pp.
1547
1557
. 10.1109/TII.2014.2306397
2.
Tao
,
F.
,
Qi
,
Q.
,
Liu
,
A.
, and
Kusiak
,
A.
,
2018
, “
Data-Driven Smart Manufacturing
,”
J. Manuf. Syst.
,
48
(
C
), pp.
157
169
. 10.1016/j.jmsy.2018.01.006
3.
Jin
,
J.
,
Liu
,
Y.
,
Ji
,
P.
, and
Kwong
,
C. K.
,
2018
, “
Review on Recent Advances in Information Mining From Big Consumer Opinion Data for Product Design
,”
ASME J. Comput. Ind. Sci. Eng.
,
19
(
1
), p.
010801
. 10.1115/1.4041087
4.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1483
1510
. 10.1016/j.ymssp.2005.09.012
5.
Tao
,
F.
, and
Qi
,
Q.
,
2019
, “
New IT Driven Service-Oriented Smart Manufacturing: Framework and Characteristics
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
49
(
1
), pp.
81
91
. 10.1109/TSMC.2017.2723764
6.
He
,
B.
,
Shao
,
Y.
,
Wang
,
S.
,
Gu
,
Z.
, and
Bai
,
K.
,
2019
, “
Product Environmental Footprints Assessment for Product Life Cycle
,”
J. Clean. Prod.
,
233
, pp.
446
460
. 10.1016/j.jclepro.2019.06.078
7.
Wan
,
X.-J.
,
Liu
,
L.
,
Xu
,
Z.
, and
Xu
,
Z.
,
2018
, “
Gearbox Fault Diagnosis Based on Selective Integrated Soft Competitive Learning Fuzzy Adaptive Resonance Theory
,”
ASME J. Comput. Ind. Sci. Eng.
,
19
(
1
), p.
011008
. 10.1115/1.4041776
8.
Ostojic
,
P.
,
Banerjee
,
A.
,
Patel
,
D.
,
Basu
,
W.
, and
Ali
,
S.
,
2014
, “
Advanced Motor Monitoring and Diagnostics
,”
IEEE Trans. Ind. Appl.
,
50
(
5
), pp.
1
9
. 10.1109/TIA.2014.2303252
9.
Ren
,
L.
,
Cui
,
J.
,
Sun
,
Y.
, and
Cheng
,
X.
,
2017
, “
Multi-bearing Remaining Useful Life Collaborative Prediction: A Deep Learning Approach
,”
J. Manuf. Syst.
,
43
(
2
), pp.
248
256
. 10.1016/j.jmsy.2017.02.013
10.
Si
,
X. S.
,
Wang
,
W.
,
Hu
,
C. H.
,
Chen
,
M. Y.
, and
Zhou
,
D. H.
,
2013
, “
A Wiener-Process-Based Degradation Model With a Recursive Filter Algorithm for Remaining Useful Life Estimation
,”
Mech. Syst. Signal Process
,
35
(
1–2
), pp.
219
237
. 10.1016/j.ymssp.2012.08.016
11.
Ling
,
M. H.
,
Tsui
,
K. L.
, and
Balakrishnan
,
N.
,
2015
, “
Accelerated Degradation Analysis for the Quality of a System Based on the Gamma Process
,”
IEEE Trans. Reliab.
,
64
(
1
), pp.
463
472
. 10.1109/TR.2014.2337071
12.
Si
,
X. S.
,
Wang
,
W.
,
Hu
,
C. H.
,
Zhou
,
D. H.
, and
Pecht
,
M. G.
,
2012
, “
Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process
,”
IEEE Trans. Reliab.
,
61
(
1
), pp.
50
67
. 10.1109/TR.2011.2182221
13.
Zhang
,
D.
,
Baraldi
,
P.
,
Cadet
,
C.
,
Yousfi-Steiner
,
N.
,
Bérenguer
,
C.
, and
Zio
,
E.
,
2019
, “
An Ensemble of Models for Integrating Dependent Sources of Information for the Prognosis of the Remaining Useful Life of Proton Exchange Membrane Fuel Cells
,”
Mech. Syst. Signal Process
,
124
, pp.
479
501
. 10.1016/j.ymssp.2019.01.060
14.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R. X.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
. 10.1115/1.4036350
15.
Lei
,
Y.
,
Li
,
N.
,
Gontarz
,
S.
,
Lin
,
J.
,
Radkowski
,
S.
, and
Dybala
,
J.
,
2016
, “
A Model-Based Method for Remaining Useful Life Prediction of Machinery
,”
IEEE Trans. Reliab.
,
65
(
3
), pp.
1314
1326
. 10.1109/TR.2016.2570568
16.
Zhan
,
P.
,
Jayaram
,
U.
,
Kim
,
O. J.
, and
Zhu
,
L. J.
,
2010
, “
Knowledge Representation and Ontology Mapping Methods for Product Data in Engineering Applications
,”
ASME J. Comput. Ind. Sci. Eng.
,
19
(
1
), p.
021004
. 10.1115/1.3330432
17.
Tao
,
F.
,
Zhang
,
M.
, and
Nee
,
A. Y. C.
,
2019
,
Digital Twin Driven Smart Manufacturing
,
Elsevier-Academic Press
,
London, UK
.
18.
He
,
B.
,
Wang
,
S.
, and
Liu
,
Y.
,
2019
, “
Underactuated Robotics: A Review
,”
Int. J. Adv. Robot. Syst.
,
16
(
4
). 10.1177/1729881419862164
19.
Lan
,
L.
,
Liu
,
Y.
, and
Feng Lu
,
W.
,
2017
, “
Automatic Discovery of Design Task Structure Using Deep Belief Nets
,”
ASME J. Comput. Ind. Sci. Eng.
,
17
(
4
), p.
041001
. 10.1115/1.4036198
20.
Gebraeel
,
N.
,
2006
, “
Sensory-Updated Residual Life Distributions for Components With Exponential Degradation Patterns
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
4
), pp.
382
393
. 10.1109/TASE.2006.876609
21.
Chen
,
Z. S.
,
Yang
,
Y. M.
, and
Hu
,
Z.
,
2012
, “
A Technical Framework and Roadmap of Embedded Diagnostics and Prognostics for Complex Mechanical Systems in Prognostics and Health Management Systems
,”
IEEE Trans. Reliab.
,
61
(
2
), pp.
314
322
. 10.1109/TR.2012.2196171
22.
Barszcz
,
T.
, and
Jabłoński
,
A.
,
2011
, “
A Novel Method for the Optimal Band Selection for Vibration Signal Demodulation and Comparison With the Kurtogram
,”
Mech. Syst. Signal Process
,
25
(
1
), pp.
431
451
. 10.1016/j.ymssp.2010.05.018
23.
Cococcioni
,
M.
,
Lazzerini
,
B.
, and
Volpi
,
S. L.
,
2013
, “
Robust Diagnosis of Rolling Element Bearings Based on Classification Techniques
,”
IEEE Trans. Ind. Inf.
,
9
(
4
), pp.
2256
2263
. 10.1109/TII.2012.2231084
24.
Li
,
W.
,
Zhang
,
S.
, and
Rakheja
,
S.
,
2016
, “
Feature Denoising and Nearest–Farthest Distance Preserving Projection for Machine Fault Diagnosis
,”
IEEE Trans. Ind. Inf.
,
12
(
1
), pp.
393
404
. 10.1109/TII.2015.2475219
25.
Liu
,
Z.
,
Sun
,
G.
,
Bu
,
S.
,
Han
,
J.
,
Tang
,
X.
, and
Pecht
,
M.
,
2017
, “
Particle Learning Framework for Estimating the Remaining Useful Life of Lithium-Ion Batteries
,”
IEEE Trans. Instrum. Meas.
,
66
(
2
), pp.
280
293
. 10.1109/TIM.2016.2622838
26.
Zhu
,
K.
, and
Liu
,
T.
,
2017
, “
Online Tool Wear Monitoring via Hidden Semi-Markov Model With Dependent Durations
,”
IEEE Trans. Ind. Inf.
,
14
(
1
), pp.
69
78
.
27.
Lu
,
Y.
, and
Christou
,
A.
,
2017
, “
Lifetime Estimation of Insulated Gate Bipolar Transistor Modules Using Two-Step Bayesian Estimation
,”
IEEE Trans. Device Mater. Reliab.
,
17
(
2
), pp.
414
421
.
28.
Liu
,
D.
,
Xie
,
W.
,
Liao
,
H.
, and
Peng
,
Y.
,
2015
, “
An Integrated Probabilistic Approach to Lithium-Ion Battery Remaining Useful Life Estimation
,”
IEEE Trans. Instrum. Meas.
,
64
(
3
), pp.
660
670
. 10.1109/TIM.2014.2348613
29.
Tian
,
Z.
,
2012
, “
An Artificial Neural Network Method for Remaining Useful Life Prediction of Equipment Subject to Condition Monitoring
,”
J. Intell. Manuf.
,
23
(
2
), pp.
227
237
. 10.1007/s10845-009-0356-9
30.
Sunarno
,
I.
,
Christian
,
R.
,
Achmad
,
B.
,
Gook Kang
,
H.
,
Pulung Sasmito
,
A.
, and
Peng Hong
,
L.
,
2018
, “
Prognostic Methods on Accelerator’s Anode Voltage Regulator
,”
6th International Energy Conference (ASTECHNOVA)
,
Yogyakarta, Indonesia
,
Nov. 1
, p.
01020
.
31.
Cheng
,
Y.
,
Lu
,
C.
,
Li
,
T.
, and
Tao
,
L.
,
2015
, “
Residual Lifetime Prediction for Lithium-Ion Battery Based on Functional Principal Component Analysis and Bayesian Approach
,”
Energy
,
90
(
2
), pp.
1983
1993
. 10.1016/j.energy.2015.07.022
32.
Ma
,
C.
,
Zhai
,
X.
,
Wang
,
Z.
,
Tian
,
M.
,
Yu
,
Q.
,
Liu
,
L.
,
Liu
,
H.
,
Wang
,
H.
, and
Yang
,
X.
,
2018
, “
State of Health Prediction for Lithium-Ion Batteries Using Multiple-View Feature Fusion and Support Vector Regression Ensemble
,”
Int. J. Mach. Learn. Cybern.
,
10
(
9
), pp.
2269
2282
. 10.1007/s13042-018-0865-y
33.
Malhi
,
A.
,
Yan
,
R.
, and
Gao
,
R. X.
,
2011
, “
Prognosis of Defect Propagation Based on Recurrent Neural Networks
,”
IEEE Trans. Instrum. Meas.
,
60
(
3
), pp.
703
711
. 10.1109/TIM.2010.2078296
34.
Guo
,
L.
,
Li
,
N.
,
Jia
,
F.
,
Lei
,
Y.
, and
Lin
,
J.
,
2017
, “
A Recurrent Neural Network Based Health Indicator for Remaining Useful Life Prediction of Bearings
,”
Neurocomputing
,
240
(
C
), pp.
98
109
. 10.1016/j.neucom.2017.02.045
35.
Cheng
,
Y.
,
Zhu
,
H.
,
Wu
,
J.
, and
Shao
,
X.
,
2019
, “
Machine Health Monitoring Using Adaptive Kernel Spectral Clustering and Deep Long Short-Term Memory Recurrent Neural Networks
,”
IEEE Trans. Ind. Inf.
,
15
(
2
), pp.
987
997
. 10.1109/TII.2018.2866549
36.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Process
,
115
, pp.
213
237
. 10.1016/j.ymssp.2018.05.050
37.
Burnap
,
A.
,
Pan
,
Y.
,
Liu
,
Y.
,
Ren
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Improving Design Preference Prediction Accuracy Using Feature Learning
,”
J. Mech. Des.
,
138
(
7
), p.
071404
. 10.1115/1.4033427
38.
Wang
,
Y.
,
Peng
,
Y.
,
Zi
,
Y.
,
Jin
,
X.
, and
Tsui
,
K.-L.
,
2016
, “
A Two-Stage Data-Driven-Based Prognostic Approach for Bearing Degradation Problem
,”
IEEE Trans. Ind. Inf.
,
12
(
3
), pp.
924
932
. 10.1109/TII.2016.2535368
39.
Wang
,
T.
,
Chen
,
Y.
,
Qiao
,
M.
, and
Snoussi
,
H.
,
2017
, “
A Fast and Robust Convolutional Neural Network-Based Defect Detection Model in Product Quality Control
,”
12th International Conference on Frontiers of Design and Manufacturing (ICFDM)
,
Shenyang, China
,
Aug. 10–12
, pp.
3465
3471
.
40.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
. 10.1162/neco.1997.9.8.1735
41.
Mou
,
L.
,
Ghamisi
,
P.
, and
Xiao
,
X. Z.
,
2017
, “
Deep Recurrent Neural Networks for Hyperspectral Image Classification
,”
IEEE Trans. Geosci. Remote Sens.
,
55
(
7
), pp.
1
17
. 10.1109/TGRS.2017.2702136
42.
Ho Tong Min
,
D.
,
Ienco
,
D.
,
Gaetano
,
R.
,
Lalande
,
N.
,
Ndikumana
,
E.
,
Osman
,
F.
, and
Maurel
,
P.
,
2018
, “
Deep Recurrent Neural Networks for Winter Vegetation Quality Mapping via Multitemporal SAR Sentinel-1
,”
IEEE Geosci. Remote Sens. Lett.
,
15
(
3
), pp.
464
468
. 10.1109/LGRS.2018.2794581
43.
Feichtenhofer
,
C.
,
Pinz
,
A.
, and
Zisserman
,
A.
,
2016
, “
Convolutional Two-Stream Network Fusion for Video Action Recognition
,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas
,
June 26–July 1
, pp.
1933
1941
.
You do not currently have access to this content.