Abstract

This paper presents a novel Fault Adaptive Mission Planning (FAMP) framework for complex systems aimed at increasing useful-life and reducing downtime through condition-based decision-making. A hallmark of complex systems is that they typically have access to multiple mission plans that allow their mission objectives to be accomplished in a variety of ways. In hopes of exploiting this characteristic, FAMP is the process of increasing a system's useful-lifespan by first determining how each potential mission plan affects the system's degradation differently, and then by implementing a planning strategy that utilizes this information to repeatedly recalculate a new mission plan as the system degrades. Fault-augmented physics models identify how component degradation will affect the system's current and future performance for a given mission plan. Then, at various degradation-based thresholds, new mission plans are installed such that whenever possible, the healthiest components are used more, or in different ways, than the more degraded components. This process promotes balanced degradation, preventing useful-life from being wasted and reducing downtime through synchronized maintenance schedules. This work expands the prognostics and health management paradigm by enabling life extension and maintenance reduction through real-time FAMP.

References

1.
Bankes
,
S. C.
,
2010
, “
Robustness, Adaptivity, and Resiliency Analysis
,”
2010 AAAI Fall Symposium Series
,
Arlington, VA
,
Nov. 11–13
.
2.
Tague
,
N.
,
2004
, “Failure Mode Effects Analysis (FMEA),”
The Quality Toolbox
, 2nd ed.,
ASQ Quality Press
,
Milwaukee, WI
, pp.
236
240
.
3.
Kmenta
,
S.
,
Fitch
,
P.
, and
Ishii
,
K.
,
1999
, “Advanced Failure Modes and Effects Analysis of Complex Processes,”
Proceedings of the 1999 ASME Design Engineering Technical Conference, Design for Manufacturing Conference
.
4.
Nannikar
,
A. A.
,
Raut
,
D. N.
,
Chanmanwar
,
R.
,
Kamble
,
S. B.
, and
Patil
,
D.
,
2012
, “
FMEA for Manufacturing and Assembly Process
,”
International Conference on Technology and Business Management
,
Sapporo, Japan
,
July 3–4
, pp.
26
28
.
5.
Herman
,
R. M.
, and
Janasak
,
K. M.
,
2011
, “
Using FMECA to Design Sustainable Products
,”
Proceedings—Annual Reliability and Maintainability Symposium, 2011
,
Lake Buena Vista, FL
,
Jan. 24–27
, pp.
1
6
.
6.
Borgovini
,
R.
,
Pemberton
,
S.
, and
Rossi
,
M.
,
1993
,
Failure Mode, Effects, and Criticality Analysis
,
Reliability Analysis Center
,
Griffis AFB, NY
.
7.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Wie
,
M. V.
,
2005
, “
The Function-Failure Design Method
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
397
407
.
8.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Stock
,
M. E.
,
2005
, “
Linking Product Functionality to Historic Failures to Improve Failure Analysis in Design
,”
Res. Eng. Des.
,
16
(
1–2
), pp.
96
108
. 10.1007/s00163-005-0005-z
9.
Lough
,
K. G.
,
Stone
,
R. B.
, and
Tumer
,
I.
,
2008
, “
Implementation Procedures for the Risk in Early Design (Red) Method
,”
J. Indus. Sys. Eng.
,
2
(
2
), pp.
126
143
.
10.
Lough
,
K. G.
,
Stone
,
R.
, and
Tumer
,
I. Y.
,
2009
, “
The Risk in Early Design Method
,”
J. Eng. Des.
,
20
(
2
), pp.
155
173
. 10.1080/09544820701684271
11.
Sierla
,
S.
,
Tumer
,
I.
,
Papakonstantinou
,
N.
,
Koskinen
,
K.
, and
Jensen
,
D.
,
2012
, “
Early Integration of Safety to the Mechatronic System Design Process by the Functional Failure Identification and Propagation Framework
,”
Mechatronics
,
22
(
2
), pp.
137
151
. 10.1016/j.mechatronics.2012.01.003
12.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
,
2008
, “
A Graph-Based Fault Identification and Propagation Framework for Functional Design of Complex Systems
,”
ASME J. Mech. Des.
,
130
(
5
), p.
051401
. 10.1115/1.2885181
13.
Dallosta
,
P. M.
, and
Simcik
,
T. A.
,
2012
,
Designing for Supportability: Driving Reliability, Availability, and Maintainability In
,
Defense Acquisition
,
Fort Belvoir, VA
.
14.
Saha
,
B.
,
Honda
,
T.
,
Matei
,
I.
, and
Saund
,
E.
,
2014
, “
A Model-Based Approach for an Optimal Maintenance Strategy
,”
Proceedings of Second European Conference of the Prognostics and Health Management Society
,
Nantes, France
,
July 8–10
.
15.
Jardine
,
A. K.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1483
1510
. 10.1016/j.ymssp.2005.09.012
16.
Barlow
,
R.
, and
Hunter
,
L.
,
1960
, “
Optimum Preventive Maintenance Policies
,”
Oper. Res.
,
8
(
1
), pp.
90
100
. 10.1287/opre.8.1.90
17.
Tinga
,
T.
,
2010
, “
Application of Physical Failure Models to Enable Usage and Load Based Maintenance
,”
Reliab. Eng. Syst. Safe.
,
95
(
10
), pp.
1061
1075
. 10.1016/j.ress.2010.04.015
18.
Tinga
,
T.
, and
Loendersloot
,
R.
,
2019
,
Physical Model-Based Prognostics and Health Monitoring to Enable Predictive Maintenance
,
Springer
,
New York
, pp.
313
353
.
19.
Rushby
,
J.
, and
Crow
,
J.
,
1990
,
Evaluation of an Expert System for Fault Detection, Isolation, and Recovery in the Manned Maneuvering Unit
,
NASA Technical Report
,
USA
.
20.
Carnes
,
J. R.
,
Misra
,
A.
, and
Sztipanovits
,
J.
,
1996
, “Model-Integrated Toolset for Fault Detection, Isolation and Recovery (FDIR),”
Proceedings of the IEEE Symposium and Workshop on Engineering of Computer Based Systems
,
IEEE Computer Society
,
Washington, DC
, pp.
356
363
.
21.
Hwang
,
I.
,
Kim
,
S.
,
Kim
,
Y.
, and
Seah
,
C. E.
,
2009
, “
A Survey of Fault Detection, Isolation, and Reconfiguration Methods
,”
IEEE Trans. Contr. Syst. Technol.
,
18
(
3
), pp.
636
653
. 10.1109/TCST.2009.2026285
22.
Wander
,
A
, and
Förstner
,
R
,
2013
,
Innovative Fault Detection, Isolation and Recovery Strategies on-board Spacecraft: State of the art and Research Challenges
,
Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV
.
23.
Newcamp
,
J.
,
Verhagen
,
W. J. C.
,
Santos
,
B. F.
, and
Curran
,
R.
,
2019
, “
Retirement Optimization Through Aircraft Transfers and Employment
,”
J. Air Trans. Manage.
,
79
, pp.
101680
. 10.1016/j.jairtraman.2019.101680
24.
Lee
,
T.-R.
, and
Ueng
,
J.-H.
,
1999
, “
A Study of Vehicle Routing Problems With Load-Balancing
,”
Int. J. Phys. Distrib. Logist. Manag.
,
29
(
10
), pp.
646
657
.
25.
Siewiorek
,
D. P.
,
1991
, “
Architecture of Fault-Tolerant Computers: An Historical Perspective
,”
Proceedings of the IEEE
,
79
(
12
), pp.
1710
1734
.
26.
Tang
,
L.
,
Kacprzynski
,
G. J.
,
Goebel
,
K.
,
Saxena
,
A.
,
Saha
,
B.
, and
Vachtsevanos
,
G.
,
2008
, “
Prognostics-Enhanced Automated Contingency Management for Advanced Autonomous Systems
,”
2008 International Conference on Prognostics and Health Management
,
Denver, CO
,
Oct. 6–9
, pp.
1
9
.
27.
Jiang
,
J.
, and
Niu
,
G.
, “
PHM Technology Development Towards Vehicle Automated Contingency Management
,”
3rd International Conference on Materials and Reliability
,
Chengdu, Suchuan, China
,
Oct. 24–27
, pp.
23
25
.
28.
DeStefano
,
C.
, and
Jensen
,
D.
,
2015
, “
Failure Identification for Mission Analysis for Complex Systems
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
.
29.
DeStefano
,
C.
, and
Jensen
,
D.
,
2017
, “
Adaptive Mission Planning and Analysis for Complex Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
4
), p.
041005
. 10.1115/1.4034739
30.
Minhas
,
R.
,
De Kleer
,
J.
,
Matei
,
I.
,
Saha
,
B.
,
Janssen
,
B.
,
Bobrow
,
D.
, and
Kurtoglu
,
T.
,
2014
, “
Using Fault Augmented Modelica Models for Diagnostics
,”
Proceedings of the 10th International Modelica Conference
,
Lund; Sweden
,
Mar. 10–12, 2014
, pp.
437
445
.
31.
Schütz
,
W.
, and
Heuler
,
P.
,
1993
, “
Miner’s Rule Revisited
,”
Proceedings of the AGARD-SMP Meeting
,
Rome, Italy
,
September
.
32.
Schulman
,
J.
,
Duan
,
Y.
,
Ho
,
J.
,
Lee
,
A.
,
Awwal
,
I.
,
Bradlow
,
H.
,
Pan
,
J.
,
Patil
,
S.
,
Goldberg
,
K.
, and
Abbeel
,
P.
,
2014
, “
Motion Planning With Sequential Convex Optimization and Convex Collision Checking
,”
Int. J. Rob. Res.
,
33
(
9
), pp.
1251
1270
. 10.1177/0278364914528132
33.
Kalakrishnan
,
M.
,
Chitta
,
S.
,
Theodorou
,
E.
,
Pastor
,
P.
, and
Schaal
,
S.
,
2011
, “
STOMP: Stochastic Trajectory Optimization for Motion Planning
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May, 2011
, pp.
4569
4574
.
34.
Pan
,
J.
,
Zhang
,
L.
, and
Manocha
,
D.
,
2012
, “
Collision-Free and Smooth Trajectory Computation in Cluttered Environments
,”
Int. J. Robot. Res.
,
31
(
10
), pp.
1155
1175
. 10.1177/0278364912453186
You do not currently have access to this content.