Abstract

Modern design problems often require multi-modal, reconfigurable solutions. Function modeling is a common tool used to explore solutions in early mechanical design. Currently, function modeling formalisms minimally support the modeling of multi-modal systems in a formal manner. There is a need in function modeling to capture multi-modal system and analyze the effects of control signals and status signals on their operating modes. This paper presents the concept of functional conjugacy, where two function verbs or functional subgraphs are topological opposites of each other. The paper presents a formal representation of these conjugate verbs that formally captures the transition from one mode of operation to its topological opposite based on the existence of, or the value of, signal flows. Additionally, this paper extends functional conjugacy to functional features, which supports conjugacy-based reasoning at a higher level of abstraction. Through the example of a system-level function model of a geothermal heat pump (GHP)operating in its heating and cooling modes, this paper demonstrates the ability to support modal reasoning on function models using functional conjugacy and illustrates the modeling efficacy of the extended representation.

References

1.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
London
.
2.
Ullman
,
D. G.
,
1992
,
The Mechanical Design Process
,
McGraw-Hill
,
New York
.
3.
Ulrich
,
K.
, and
Eppinger
,
S.
,
2007
,
Product Design and Development
,
McGraw-Hill, New York
.
4.
Chowdhury
,
A.
,
Mao
,
X.
,
Sen
,
C.
, and
Venkatanarasimhan
,
L. N. A.
,
2019
, “
Finite-State Automata-Based Representation of Device States for Function Modeling and Formal Definitions of Signal-Processing Functions
,”
ASME 2019 IDETC/ CIE
,
Anaheim, CA
,
Aug. 18–21
, DETC2019-98248, p.
V001T02A016
.
5.
Liu
,
C.
,
Hildre
,
H. P.
,
Zhang
,
H.
, and
Rølvåg
,
T.
,
2016
, “
Product Architecture Design of Multi-Modal Products
,”
Res. Eng. Des.
,
27
(
4
), pp.
331
346
.
6.
Weaver
,
J. M.
,
Wood
,
K. L.
, and
Jensen
,
D.
,
2008
, “
Transformation Facilitators: A Quantitative Analysis of Reconfigurable Products and Their Characteristics
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Aug. 3–6
,
Brooklyn, NY
, DETC2008-49891, pp.
351
366
.
7.
Far
,
B. H.
, and
Elamy
,
A. H.
,
2006
, “
Functional Reasoning Theories: Problems and Perspectives
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
2
), pp.
75
88
.
8.
Chandrasekaran
,
B.
, and
Josephson
,
J. R.
,
2000
, “
Function in Device Representation
,”
Eng. Comput.
,
16
(
3–4
), pp.
162
177
.
9.
Chakrabarti
,
A.
,
2001
, “
Sharing in Design-Categories, Importance, and Issues
,”
International Conference on Engineering Design (ICED)
,
Glasgow, UK
,
Aug. 21–23
.
10.
Yildirim
,
U.
,
Campean
,
F.
, and
Williams
,
H.
,
2017
, “
Function Modeling Using the System State Flow Diagram
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
31
(
4
), pp.
413
435
.
11.
Xu
,
C.
,
Yao
,
Z.
,
Gupta
,
S. K.
,
Gruninger
,
M.
, and
Sriram
,
R.
,
2005
, “
Towards Computer-Aided Conceptual Design of Mechatronic Devices With Multiple Interaction-States
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference—DETC2005
,
Long Beach, CA
,
Sept. 24–28
,
American Society of Mechanical Engineers Digital Collection
, pp.
455
467
.
12.
Stone
,
R. B.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.
13.
Hopcroft
,
J.
,
Motwani
,
R.
, and
Ullman
,
J.
,
2008
,
Introduction to Automata Theory, Languages, and Computation
,
Pearson Education India
,
New York, NY
.
14.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2013
, “
A Formal Representation of Function Structure Graphs for Physics-Based Reasoning
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
2
), p.
021001
.
15.
Otto
,
K.
, and
Wood
,
K.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice-Hall
,
Upper Saddle River, NJ
.
16.
Eckert
,
C.
,
Alink
,
T.
,
Ruckpaul
,
A.
, and
Albers
,
A.
,
2011
, “
Different Notions of Function: Results From an Experiment on the Analysis of an Existing Product
,”
J. Eng. Des.
,
22
(
11–12
), pp.
811
837
.
17.
Eisenbart
,
B.
,
Gericke
,
K.
, and
Blessing
,
L.
,
2013
, “
An Analysis of Functional Modeling Approaches Across Disciplines
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
27
(
3
), pp.
281
289
.
18.
Vermaas
,
P. E.
,
2010
, “
Technical Functions: Towards Accepting Different Engineering Meanings With One Overall Account
,”
Proceedings of TMCE 2010 Symposium
,
Ancona, Italy
,
Apr. 12–16
, pp.
183
194
.
19.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2004
, “
The Situated Function-Behaviour-Structure Framework
,”
Des. Stud.
,
25
(
4
), pp.
373
391
.
20.
Umeda
,
Y.
,
Ishii
,
M.
,
Yoshioka
,
M.
,
Shimomura
,
Y.
, and
Tomiyama
,
T.
,
1996
, “
Supporting Conceptual Design Based on the Function-Behavior-State Modeler
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
(
04
), pp.
275
288
.
21.
Deng
,
Y.-M.
,
Britton
,
G. A.
, and
Tor
,
S. B.
,
1998
, “
Design Perspective of Mechanical Function and Its Object-Oriented Representation Scheme
,”
Eng. Comput.
,
14
(
4
), pp.
309
320
.
22.
Kitamura
,
Y.
, and
Mizoguchi
,
R.
,
2004
, “
Ontology-Based Systematization of Functional Knowledge
,”
J. Eng. Des.
,
15
(
4
), pp.
327
351
.
23.
Goel
,
A. K.
, and
Bhatta
,
S. R.
,
2004
, “
Use of Design Patterns in Analogy-Based Design
,”
Adv. Eng. Inf.
,
18
(
2
), pp.
85
94
.
24.
Bracewell
,
R. H.
, and
Sharpe
,
J. E. E.
,
1996
, “
Functional Descriptions Used in Computer Support for Qualitative Scheme Generation—‘Schemebuilder
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
(
4
), pp.
333
345
.
25.
Rodenacker
,
W. G.
,
1991
,
Methodisches Konstruieren
,
Springer
,
Berlin, Heidelberg
.
26.
Bohm
,
M. R.
, and
Stone
,
R. B.
,
2004
, “
Product Design Support: Exploring a Design Repository System
,”
ASME 2004 International Mechanical Engineering Congress and Exposition
,
Anaheim, CA
,
Nov. 13–19
, pp.
55
65
.
27.
Murphy
,
A. R.
,
Banks
,
H. D.
,
Nagel
,
R. L.
, and
Linsey
,
J. S.
,
2019
, “
Graduate Students’ Mental Models:
An
Investigation Into the Role of Function in Systems Understanding
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Anaheim, CA
,
Aug. 18–21
, American Society of Mechanical Engineers, p.
V007T06A024
.
28.
Hubka
,
V.
, and
Eder
,
W. E.
,
2002
, “Theory of Technical Systems and Engineering Design Synthesis,”
Engineering Design Synthesis
,
W. E.
Eder
and
V.
Hubka
, eds.,
Springer
,
London
, pp.
49
66
.
29.
Murdock
,
J. W.
,
Szykman
,
S.
, and
Sriram
,
R. D.
,
1997
, “
An Information Modeling Framework to Support Design Databases and Repositories
,”
1997 ASME Design Engineering Technical Conferences
,
Sacramento, CA
,
Sept. 14–17
, pp.
14
17
.
30.
Sossou
,
G.
,
Demoly
,
F.
,
Montavon
,
G.
, and
Gomes
,
S.
,
2018
, “
An Additive Manufacturing Oriented Design Approach to Mechanical Assemblies
,”
J. Comput. Des. Eng.
,
5
(
1
), pp.
3
18
.
31.
Tao
,
F.
,
Sui
,
F.
,
Liu
,
A.
,
Qi
,
Q.
,
Zhang
,
M.
,
Song
,
B.
,
Guo
,
Z.
,
Lu
,
S. C.-Y.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin-Driven Product Design Framework
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3935
3953
.
32.
Kurfman
,
M. A.
,
Stone
,
R. B.
,
Van Wie
,
M.
, and
Wood
,
K. L.
,
2000
, “
Theoretical Underpinnings of Functional Modeling: Preliminary Experimental Studies
,”
Proceedings of DETC 2000 ASME Design Engineering Technical Conferences
,
Baltimore, MD
,
Sept. 10–13
, pp.
203
216
.
33.
Mcadams
,
D. A.
, and
Wood
,
K. L.
,
2002
, “
A Quantitative Similarity Metric for Design-by-Analogy
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
173
182
.
34.
McAdams
,
D. A.
,
Stone
,
R. B.
, and
Wood
,
K. L.
,
1999
, “
Functional Interdependence and Product Similarity Based on Customer Needs
,”
Res. Eng. Des.
,
11
(
1
), pp.
1
19
.
35.
Agyemang
,
M.
,
Linsey
,
J.
, and
Turner
,
C. J.
,
2017
, “
Transforming Functional Models to Critical Chain Models via Expert Knowledge and Automatic Parsing Rules for Design Analogy Identification
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
31
(
4
), pp.
501
511
.
36.
Liu
,
L.
,
Li
,
Y.
,
Xiong
,
Y.
, and
Cavallucci
,
D.
,
2020
, “
A New Function-Based Patent Knowledge Retrieval Tool for Conceptual Design of Innovative Products
,”
Comput. Ind.
,
115
, p.
103154
.
37.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2013
, “
Physics-Based Reasoning in Conceptual Design Using a Formal Representation of Function Structure Graphs
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
1
), p.
011008
.
38.
Kurtoglu
,
T.
,
Swantner
,
A.
, and
Campbell
,
M. I.
,
2010
, “
Automating the Conceptual Design Process: ‘From Black Box to Component Selection
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
(
1
), pp.
49
62
.
39.
Vucovich
,
J.
,
Bhardwaj
,
N.
,
Ho
,
H. H.
,
Ramakrishna
,
M.
,
Thakur
,
M.
, and
Stone
,
R.
,
2006
, “
Concept Generation Algorithms for Repository-Based Early Design
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Philadelphia, PA
,
Sept. 10–13
,
American Society of Mechanical Engineers Digital Collection
, pp.
239
249
.
40.
Kurtoglu
,
T.
,
Campbell
,
M. I.
,
Bryant
,
C. R.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2005
, “
Deriving a Component Basis for Computational Functional Synthesis
,”
Proceedings ICED 05, the 15th International Conference on Engineering Design
,
Melbourne, Australia
,
Aug. 15–18
, pp.
1687
1701
.
41.
Mathieson
,
J. L.
,
Shanthakumar
,
A.
,
Sen
,
C.
,
Arlitt
,
R.
,
Summers
,
J. D.
, and
Stone
,
R.
,
2011
, “
Complexity as a Surrogate Mapping Between Function Models and Market Value
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Washington, DC
,
Aug. 28–31
,
American Society of Mechanical Engineers Digital Collection
, pp.
55
64
.
42.
Gill
,
A. S.
,
Summers
,
J. D.
, and
Turner
,
C. J.
,
2017
, “
Comparing Function Structures and Pruned Function Structures for Market Price Prediction: An Approach to Benchmarking Representation Inferencing Value
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
31
(
4
), pp.
550
566
.
43.
He
,
B.
,
Niu
,
Y.
,
Hou
,
S.
, and
Li
,
F.
,
2018
, “
Sustainable Design From Functional Domain to Physical Domain
,”
J. Cleaner Prod.
,
197
, pp.
1296
1306
.
44.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
,
2008
, “
A Graph-Based Fault Identification and Propagation Framework for Functional Design of Complex Systems
,”
ASME J. Mech. Des.
,
130
(
5
), pp.
51401
51408
.
45.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Van Wie
,
M.
,
2005
, “
The Function-Failure Design Method
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
397
407
.
46.
Cheong
,
H.
,
Shu
,
L. H.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2008
, “
Translating Terms of the Functional Basis Into Biologically Meaningful Keywords
,”
ASME 2008 IDETC/CIE
,
American Society of Mechanical Engineers Digital Collection
,
Brooklyn, NY
, DETC2008-49363, pp.
137
148
.
47.
Nagel
,
R. L.
,
Perry
,
K.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2009
, “
Functioncad: A Functional Modeling Application Based on the Function Design Framework
,”
ASME 2009 IDETC/CIE
,
San Diego, CA
,
Aug. 30–Sept. 2
, DETC2009-87010, pp.
591
600
.
48.
Zhang
,
R.
,
Cha
,
J.
, and
Lu
,
Y.
,
2007
, “
A Conceptual Design Model Using Axiomatic Design, Functional Basis and TRIZ
,”
IEEM 2007: 2007 IEEE International Conference on Industrial Engineering and Engineering Management
,
Singapore, Singapore
,
Dec. 2–4
, pp.
1807
1810
.
49.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2010
, “
Topological Information Content and Expressiveness of Function Models in Mechanical Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031003
.
50.
Caldwell
,
B. W.
,
Thomas
,
J. E.
,
Sen
,
C.
,
Mocko
,
G. M.
, and
Summers
,
J. D.
,
2012
, “
The Effects of Language and Pruning on Function Structure Interpretability
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061001
.
51.
Hao
,
J.
,
Zhao
,
Q.
, and
Yan
,
Y.
,
2017
, “
A Function-Based Computational Method for Design Concept Evaluation
,”
Adv. Eng. Inf.
,
32
(
C
), pp.
237
247
.
52.
Mokhtarian
,
H.
,
Coatanéa
,
E.
, and
Paris
,
H.
,
2017
, “
Function Modeling Combined with Physics-Based Reasoning for Assessing Design Options and Supporting Innovative Ideation
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
31
(
4
), pp.
476
500
.
53.
Iwasaki
,
Y.
,
Vescovi
,
M.
,
Fikes
,
R.
, and
Chandrasekaran
,
B.
,
1995
, “
Causal Functional Representation Language With Behavior-Based Semantics
,”
Appl. Artif. Intell. Int. J.
,
9
(
1
), pp.
5
31
.
54.
Mao
,
X.
, and
Sen
,
C.
,
2019
, “
Semantic and Qualitative Physics-Based Reasoning on Plain-English Flow Terms for Generating Function Model Alternatives
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
041006
.
55.
Venkatanarasimhan
,
L. N. A.
,
Chowdhury
,
A.
, and
Sen
,
C.
,
2020
, “
Optimizing an Algorithm for Data Mining a Design Repository to Automate Functional Modeling
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, IDETC/CIE2020, Virtual, Online,
Aug. 17–19
, p. V11AT11A014.
56.
Sridharan
,
P.
, and
Campbell
,
M. I.
,
2005
, “
A Study on the Grammatical Construction of Function Structures
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
3
), pp.
139
160
.
57.
Kirschman
,
C. F.
,
Fadel
,
G. M.
, and
Jara-Almonte
,
C. C.
,
1998
, “
Classifying Functions for Mechanical Design
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
475
482
.
58.
Collins
,
J. A.
,
Hagan
,
B. T.
, and
Bratt
,
H. M.
,
1976
, “
The Failure-Experience Matrix-A Useful Design Tool
,”
ASME J. Manuf. Sci. Eng.
,
98
(
3
), pp.
1074
1079
.
59.
Caldwell
,
B. W.
,
Sen
,
C.
,
Mocko
,
G. M.
, and
Summers
,
J. D.
,
2011
, “
An Empirical Study of the Expressiveness of the Functional Basis
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
25
(
3
), pp.
273
287
.
60.
Sen
,
C.
,
Summers
,
J. D.
, and
Mao
,
X.
,
2019
, “
A Physics-Based Formal Vocabulary of Energy Verbs for Function Modeling
,”
ASME 2019 IDETC/ CIE
,
Anaheim, CA
,
Aug. 18–21
, DETC2019-98502, p.
V001T02A069
.
61.
Grauberger
,
P.
,
Wessels
,
H.
,
Gladysz
,
B.
,
Bursac
,
N.
,
Matthiesen
,
S.
, and
Albers
,
A.
,
2020
, “
The Contact and Channel Approach–20 Years of Application Experience in Product Engineering
,”
J. Eng. Des.
,
31
(
5
), pp.
241
265
.
62.
Weber
,
C.
,
2008
, “
How to Derive Application-Specific Design Methodologies
,”
Proceedings of Design 2008, the 10th. International Design Conference
,
Dubrovnik, Croatia
,
May 19–22
, pp.
69
80
.
63.
Eisenbart
,
B.
,
Gericke
,
K.
, and
Blessing
,
L.
,
2013
, “
Adapting the IFM Framework to Functional Approaches Across Disciplines
,”
Proceedings of the International Conference on Engineering Design
,
ICED
, pp.
163
172
.
64.
Buur
,
J.
,
Andreasen
, and
Myrup
,
M.
,
1990
,
A Theoretical Approach to Mechatronics Design
,
Technical University of Denmark
,
Lyngby, Denmark
.
65.
Nagel
,
R. L.
,
Stone
,
R. B.
,
Hutcheson
,
R. S.
,
McAdams
,
D. A.
, and
Donndelinger
,
J. A.
,
2008
, “
Function Design Framework (FDF): Integrated Process and Function Modeling for Complex Systems
,”
ASME 2008 IDETC/CIE
,
Brooklyn, NY
,
Aug. 3–6
, pp.
273
286
.
66.
Liu
,
C.
,
Hildre
,
H. P.
,
Zhang
,
H.
, and
Rølvåg
,
T.
,
2015
, “
Conceptual Design of Multi-Modal Products
,”
Res. Eng. Des.
,
26
(
3
), pp.
219
234
.
67.
Sen
,
C.
,
2016
, “
Feature-Based Computer Modeling and Reasoning on Mechanical Functions
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Charlotte, NC
,
Aug. 21–24
, DETC2016-60353, p.
V01BT02A008
.
68.
Venkatanarasimhan
,
L. N. A.
,
Mao
,
X.
,
Chowdhury
,
A.
, and
Sen
,
C.
,
2019
, “
Physics-Based Function Features for a Set of Material-Processing Verbs
,”
ASME 2019 IDETC/ CIE
,
Anaheim, CA
,
Aug. 18–21
, DETC2019-98343, p.
V001T02A031
.
69.
Venkatanarasimhan
,
L. N. A.
, and
Chowdhury
,
A.
,
2020
, “
A Vocabulary of Function Features for Computer Aided Modeling of Thermal-Fluid Systems
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, IDETC/CIE2020,
Aug. 17–19
, p.
V009T09A036
.
70.
Mao
,
X.
,
2019
, “
Semantic and Qualitative Physics-Based Formal Reasoning for Functional Decomposition in Mechanical Design
,”
Florida Institute of Technology
,
Melbourne, FL
.
71.
Gill
,
A. S.
, and
Sen
,
C.
,
2020
, “
Evolutionary Approach to Function Model Synthesis: Development of Parameterization and Synthesis Rules
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, IDETC/CIE2020,
Aug. 17–19
, p.
V009T09A062
.
72.
Mosterman
,
P. J.
, and
Biswas
,
G.
,
2000
, “
Comprehensive Methodology for Building Hybrid Models of Physical Systems
,”
Artif. Intell.
,
121
(
1
), pp.
171
209
.
73.
Mosterman
,
P. J.
, and
Biswas
,
G.
,
1994
, “
Behavior Generation Using Model Switching – A Hybrid Bond Graph Modeling Technique
,“
Proceedings of Society for Computer Simulation
,
SCS Publishing
, pp.
177
182
.
74.
Sen
,
C.
,
2011
, “
A Formal Representation of Mechanical Functions to Support Physics-Based Computational Reasoning in Early Mechanical Design
,”
Clemson University
,
Clemson, SC
.
You do not currently have access to this content.