Abstract

In this paper, we present a machine learning algorithm to synthesize defect-free single-degree-of-freedom spatial mechanisms for the Alt–Burmester problem. The Alt–Burmester problem is a generalization of a pure motion synthesis problem to include via path-points with missing orientations. While much work has been done towards the synthesis of planar and, to some extent, spherical mechanisms, the generation of mechanisms that are free of circuit, branch, and order defects has proven to be a difficult task. This is even more challenging for spatial mechanisms, which can consist of a large number of circuits and branches. Moreover, the Alt–Burmester problem makes solving such problems using an analytical approach further demanding. In this paper, we present a novel machine learning algorithm for solving the Alt–Burmester problem for spatial 5-SS platform mechanism using a variational autoencoder (VAE) architecture. The VAE helps capture the relationship between path and orientation properties of the motion of the 5-SS mechanisms, which enables reformulating the Alt–Burmester problem into a pure motion synthesis problem. The end goal is to produce defect-free spatial mechanism design solutions. While our focus in this paper is on the 5-SS mechanisms, this approach can be scaled to any single-degree-of-freedom spatial mechanisms.

References

1.
Erdman
,
A. G.
, and
Sandor
,
G. N.
,
1991
,
Advanced Mechanism Design: Analysis and Synthesis
, 2nd ed., Vol. 2,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, Vol.
11
,
Springer
,
New York
.
3.
Alt
,
H.
,
1923
, “
Uber die Erzeugung gegebener ebener Kurven mit Hilfe des Gelenkvierecks
,”
ZAMM
,
3
(
1
), pp.
13
19
.
4.
Freudenstein
,
F.
,
1954
, “
An Analytical Approach to the Design of Four-Link Mechanisms
,”
Trans. ASME
,
76
(
3
), pp.
483
492
.
5.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
6.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
,
1978
,
Kinematics and Mechanism Design
,
John Wiley and Sons
,
New York
.
7.
Blechschmidt
,
J. L.
, and
Uicker
,
J. J.
,
1986
, “
Linkage Synthesis Using Algebraic-Curves
,”
J. Mech. Trans. Autom. Des. Trans. ASME
,
108
(
4
), pp.
543
548
.
8.
Deshpande
,
S.
, and
Purwar
,
A.
,
2017
, “
A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061005
.
9.
Nolle
,
H.
, and
Hunt
,
K. H.
,
1971
, “
Optimum Synthesis of Planar Linkages to Generate Coupler Curves
,”
J. Mech.
,
6
(
3
), p.
267
.
10.
Sancibrian
,
R.
,
Viadero
,
F.
,
Garcia
,
P.
, and
Fernandez
,
A.
,
2004
, “
Gradient-Based Optimization of Path Synthesis Problems in Planar Mechanisms
,”
Mech. Mach. Theory
,
39
(
8
), pp.
839
856
.
11.
Ullah
,
I.
, and
Kota
,
S.
,
1997
, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
504
510
.
12.
Wu
,
J.
,
Ge
,
Q. J.
, and
Gao
,
F.
,
2009
, “
An Efficient Method for Synthesizing Crank-Rocker Mechanisms for Generating Low Harmonic Curves
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Paper No. DETC2009-87140.
13.
Sharma
,
S.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2019
, “
An Optimal Parametrization Scheme for Path Generation Using Fourier Descriptors for Four-Bar Mechanism Synthesis
,”
ASME J. Comput. Inform. Sci. Eng.
,
19
(
1
), p.
014501
.
14.
Chu
,
J. K.
, and
Sun
,
J. W.
,
2010
, “
A New Approach to Dimension Synthesis of Spatial Four-Bar Linkage Through Numerical Atlas Method
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041004
.
15.
Wandling Sr
,
G. R.
,
2000
, “
Synthesis of Mechanisms for Function, Path, and Motion Generation Using Invariant Characterization, Storage and Search Methods
,”
Ph.D. thesis
,
Iowa State University
,
Ames, IA
.
16.
Vasiliu
,
A.
, and
Yannou
,
B.
,
2001
, “
Dimensional Synthesis of Planar Mechanisms Using Neural Networks: Application to Path Generator Linkages
,”
Mech. Mach. Theory
,
36
(
2
), pp.
299
310
.
17.
Galan-Marin
,
G.
,
Alonso
,
F. J.
, and
Del Castillo
,
J. M.
,
2009
, “
Shape Optimization for Path Synthesis of Crank-Rocker Mechanisms Using a Wavelet-Based Neural Network
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1132
1143
.
18.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages
,”
ASME J. Comput. Inform. Sci. Eng.
,
19
(
2
), p.
021004
.
19.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
Computational Creativity Via Assisted Variational Synthesis of Mechanisms Using Deep Generative Models
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121402
.
20.
Deshpande
,
S.
, and
Purwar
,
A.
,
2020
, “
An Image-Based Approach to Variational Path Synthesis of Linkages
,”
ASME J. Comput. Inform. Sci. Eng.
,
21
(
2
), p.
021005
.
21.
Chiang
,
C. H.
,
2000
,
Kinematics of Spherical Mechanisms
,
Krieger Pub.
,
Malabar, FL
.
22.
Chu
,
J.
, and
Sun
,
J.
,
2010
, “
Numerical Atlas Method for Path Generation of Spherical Four-Bar Mechanism
,”
Mech. Mach. Theory
,
45
(
6
), pp.
867
879
.
23.
Mullineux
,
G.
,
2011
, “
Atlas of Spherical Four-Bar Mechanisms
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1811
1823
.
24.
Premkumar
,
P.
,
Dhall
,
S. R.
, and
Kramer
,
S. N.
,
1988
, “
Selective Precision Synthesis of the Spatial Slider Crank Mechanism for Path and Function Generation
,”
ASME J. Mech. Trans. Autom. Des.
,
110
(
3
), pp.
295
302
.
25.
Premkumar
,
P.
, and
Kramer
,
S. N.
,
1989
, “
Position, Velocity, and Acceleration Synthesis of the RRSS Spatial Path-Generating Mechanism Using the Selective Precision Synthesis Method
,”
ASME J. Mech. Trans. Autom. Des.
,
111
(
1
), pp.
54
58
.
26.
Ananthasuresh
,
G. K.
, and
Kramer
,
S. N.
,
1994
, “
Analysis and Optimal Synthesis of the RSCR Spatial Mechanisms
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
174
181
.
27.
Jiménez
,
J.
,
Álvarez
,
G.
,
Cardenal
,
J.
, and
Cuadrado
,
J.
,
1997
, “
A Simple and General Method for Kinematic Synthesis of Spatial Mechanisms
,”
Mech. Mach. Theory
,
32
(
3
), pp.
323
341
.
28.
Sun
,
J. W.
,
Mu
,
D. Q.
, and
Chu
,
J. K.
,
2012
, “
Fourier Series Method for Path Generation of RCCC Mechanism
,”
Proc. Inst. Mech. Eng. Part C; J. Mech. Eng. Sci.
,
226
(
3
), pp.
816
827
.
29.
Sharma
,
S.
, and
Purwar
,
A.
,
2020
, “
Path Synthesis of Defect-Free Spatial 5-SS Mechanisms Using Machine Learning
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 83990
,
Virtual, Online
,
Aug. 17–19
,
American Society of Mechanical Engineers
, p.
V010T10A034
.
30.
Burmester
,
L.
,
1886
,
Lehrbuch der Kinematik
,
Verlag Von Arthur Felix
,
Leipzig
.
31.
Ravani
,
B.
, and
Roth
,
B.
,
1983
, “
Motion Synthesis Using Kinematic Mappings
,”
J. Mech. Trans. Autom. Des. Trans. ASME
,
105
(
3
), pp.
460
467
.
32.
Hayes
,
M.
, and
Zsombor-Murrary
,
P.
,
2004
, “
Towards Integrated Type and Dimensional Synthesis of Mechanisms for Rigid Body Guidance
,”
Proceedings of the CSME Forum 2004
,
London, ON, Canada
,
June
, pp.
53
61
.
33.
Ge
,
Q. J.
,
Zhao
,
P.
,
Purwar
,
A.
, and
Li
,
X.
,
2012
, “
A Novel Approach to Algebraic Fitting of a Pencil of Quadrics for Planar 4R Motion Synthesis
,”
ASME J. Comput. Inform. Sci. Eng.
,
12
(
4
), p.
041003
.
34.
Ge
,
Q. J.
,
Purwar
,
A.
,
Zhao
,
P.
, and
Deshpande
,
S.
,
2016
, “
A Task Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of G-Manifolds
,”
ASME J. Comput. Inform. Sci. Eng.
,
17
(
3
), p.
031011
.
35.
Bodduluri
,
R. M. C.
, and
McCarthy
,
J. M.
,
1992
, “
Finite Position Synthesis Using Image Curve of a Spherical Four-Bar Motion
,”
ASME J. Mech. Des.
,
114
(
1
), pp. 55–60.
36.
Lin
,
C.-C.
,
1998
, “
Complete Solution of the Five-Position Synthesis for Spherical Four-Bar Mechanisms
,”
J. Marine Sci. Technol.
,
6
(
1
), pp.
17
27
.
37.
Ruth
,
D.
, and
McCarthy
,
J.
,
1999
, “
The Design of Spherical 4R Linkages for Four Specified Orientations
,”
Mech. Mach. Theory
,
34
(
5
), pp.
677
692
.
38.
Brunnthaler
,
K.
,
Schrocker
,
H.
, and
Husty
,
M.
,
2006
,
Synthesis of Spherical Four-Bar Mechanisms Using Spherical Kinematic Mapping
(
Advances in Robot Kinematics
),
Springer
,
Dordrecht
.
39.
Zhuang
,
Y.
,
Zhang
,
Y.
, and
Duan
,
X.
,
2015
, “
Complete Real Solution of the Five-Orientation Motion Generation Problem for a Spherical Four-Bar Linkage
,”
Chin. J. Mech. Eng.
,
28
(
2
), pp.
258
266
.
40.
Li
,
X.
,
Zhao
,
P.
,
Purwar
,
A.
, and
Ge
,
Q.
,
2018
, “
A Unified Approach to Exact and Approximate Motion Synthesis of Spherical Four-Bar Linkages Via Kinematic Mapping
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011003
.
41.
Innocenti
,
C.
,
1995
, “
Polynomial Solution of the Spatial Burmester Problem
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
64
68
.
42.
Liao
,
Q.
, and
McCarthy
,
J. M.
,
1997
, “
On the Seven Position Synthesis of a 5-SS Platform Linkage
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
74
79
.
43.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2012
, “
Design of a 5-SS Spatial Steering Linkage
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
,
American Society of Mechanical Engineers Digital Collection
, pp.
725
735
.
44.
Li
,
X.
,
Ge
,
Q. J.
, and
Gao
,
F.
,
2014
, “
A Unified Algorithm for Geometric Design of Platform Linkages With Spherical and Plane Constraints
,”
38th Mechanisms and Robotics Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 5B
,
Buffalo, NY
,
Aug. 17–20
, p.
v05BT08A101
.
45.
Sharma
,
S.
, and
Purwar
,
A.
,
2020
, “
Unified Motion Synthesis of Spatial Seven-Bar Platform Mechanisms and Planar-Four Bar Mechanisms
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 83990
,
Virtual, Online
,
Aug. 17–19
,
American Society of Mechanical Engineers
, p.
V010T10A033
.
46.
Tong
,
Y.
,
Myszka
,
D. H.
, and
Murray
,
A. P.
,
2013
, “
Four-Bar Linkage Synthesis for a Combination of Motion and Path-Point Generation
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 6A: 37th Mechanisms and Robotics Conference
,
Portland, OR
,
Aug. 4–7
, ASME, p.
V06AT07A054
.
47.
Brake
,
D. A.
,
Hauenstein
,
J. D.
,
Murray
,
A. P.
,
Myszka
,
D. H.
, and
Wampler
,
C. W.
,
2016
, “
The Complete Solution of Alt–Burmester Synthesis Problems for Four-Bar Linkages
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041018
.
48.
Zimmerman
,
A. R. I.
,
2018
, “
Planar Linkage Synthesis for Mixed Motion, Path, and Function Generation Using Poles and Rotation Angles
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025004
.
49.
Sharma
,
S.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2019
, “
A Motion Synthesis Approach to Solving Alt–Burmester Problem by Exploiting Fourier Descriptor Relationship Between Path and Orientation Data
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011016
.
50.
Chase
,
T.
, and
Mirth
,
J.
,
1993
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
.
51.
Roth
,
B.
, and
Freudenstein
,
F.
,
1963
, “
Synthesis of Path-Generating Mechanisms by Numerical Methods
,”
ASME J. Eng. Ind.
,
85
(
3
), pp.
298
304
.
52.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1992
, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
153
159
.
53.
Sebe
,
N.
,
Cohen
,
I.
,
Garg
,
A.
, and
Huang
,
T.
,
2005
,
Machine Learning in Computer Vision
(
Computational Imaging and Vision
),
Springer
,
Dordrecht
.
54.
Hemanth
,
D.
, and
Estrela
,
V.
,
2017
,
Deep Learning for Image Processing Applications
(
Advances in Parallel Computing
),
IOS Press
,
Amsterdam, The Netherlands
.
55.
Bertalmio
,
M.
,
Sapiro
,
G.
,
Caselles
,
V.
, and
Ballester
,
C.
,
2000
, “
Image Inpainting
,”
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’00
,
New Orleans, LA
,
July
,
ACM Press/Addison-Wesley Publishing Co.
, pp.
417
424
.
56.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “
Auto-Encoding Variational Bayes
,” Computing Research Repository, abs/1312.6114.
57.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “Generative Adversarial Nets,”
Advances in Neural Information Processing Systems 27
,
Z.
,
Ghahramani
,
M.
,
Welling
,
C.
,
Cortes
,
N. D.
,
Lawrence
, and
K. Q.
,
Weinberger
, eds.,
Curran Associates, Inc.
, pp.
2672
2680
.
58.
Yeh
,
R. A.
,
Chen
,
C.
,
Yian Lim
,
T.
,
Schwing
,
A. G.
,
Hasegawa-Johnson
,
M.
, and
Do
,
M. N.
,
2017
, “
Semantic Image Inpainting With Deep Generative Models
,”
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
, pp.
6882
6890
.
59.
Ivanov
,
O.
,
Figurnov
,
M.
, and
Vetrov
,
D.
,
2018
, “
Variational Autoencoder With Arbitrary Conditioning
,”
International Conference on Learning Representations
,
New Orleans, LA
,
May 6–9
, preprint arXiv:1806.02382.
60.
Sharma
,
S.
, and
Purwar
,
A.
,
2020
, “
Using a Point-Line-Plane Representation for Unified Simulation of Planar and Spherical Mechanisms
,”
ASME J. Comput. Inform. Sci. Eng.
,
20
(
6
), p.
061002
.
61.
Purwar
,
A.
, and
Ge
,
Q. J.
,
2005
, “
The Effects of Weights in Rational Motion Design
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
967
972
.
62.
Piegl
,
L.
, and
Tiller
,
W.
,
1995
,
The NURBS Book
,
Springer
,
Berlin
.
63.
Dam
,
E. B.
,
Koch
,
M.
, and
Lillholm
,
M.
,
1998
,
Quaternions, Interpolation and Animation
, Vol.
2
,
Citeseer
.
64.
Kühnel
,
W.
,
2015
,
Differential Geometry
(
Student Mathematical Library
),
American Mathematical Society
,
Providence, RI
.
You do not currently have access to this content.