Abstract

Computational fluid dynamics (CFD) simulations are useful in the field of engineering design as they provide deep insights on product or system performance without the need to construct and test physical prototypes. However, they can be very computationally intensive to run. Machine learning methods have been shown to reconstruct high-resolution single-phase turbulent fluid flow simulations from low-resolution inputs. This offers a potential avenue towards alleviating computational cost in iterative engineering design applications. However, little work thus far has explored the application of machine learning image super-resolution methods to multiphase fluid flow (which is important for emerging fields such as marine hydrokinetic energy conversion). In this work, we apply a modified version of the super-resolution generative adversarial network (SRGAN) model to a multiphase turbulent fluid flow problem, specifically to reconstruct fluid phase fraction at a higher resolution. Two models were created in this work, one which incorporates a physics-informed term in the loss function and one which does not, and the results are discussed and compared. We found that both models significantly outperform non-machine learning upsampling methods and can preserve a substantial amount of detail, showing the versatility of the SRGAN model for upsampling multiphase fluid simulations. However, the difference in accuracy between the two models is minimal indicating that, in the context studied here, the additional complexity of a physics-informed approach may not be justified.

References

1.
Bakker
,
A.
,
2006
, “
The Future of CFD in Engineering Design
,”
Design Engineering Conference 16th National Manufacturing Week
,
Rosemont, IL
,
Mar. 20–23
, pp.
1
25
.
2.
Bhaskaran
,
R.
, and
Collins
,
L.
,
2002
, “
Introduction to CFD Basics
,” Sibley School of Mechanical and Aerospace Engineering, Cornell University, pp.
1
21
.
3.
Lane
,
G. L.
,
Schwarz
,
M. P.
, and
Evans
,
G. M.
,
2005
, “
Numerical Modelling of Gas–Liquid Flow in Stirred Tanks
,”
Chem. Eng. Sci.
,
60
(
8–9
), pp.
2203
2214
.
4.
Wang
,
Z.
,
Chen
,
J.
, and
Hoi
,
S. C. H.
,
2021
, “
Deep Learning for Image Super-Resolution: A Survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
10
), pp.
3365
3387
.
5.
Hui
,
T.-W.
,
Loy
,
C. C.
, and
Tang
,
X.
,
2016
, “
Depth Map Super-Resolution by Deep Multi-Scale Guidance
,”
European Conference on Computer Vision
,
Amsterdam, The Netherlands
,
Oct. 11–14
,
Springer
,
Cham
, pp.
353
369
.
6.
Masi
,
G.
,
Cozzolino
,
D.
,
Verdoliva
,
L.
, and
Scarpa
,
G.
,
2016
, “
Pansharpening by Convolutional Neural Networks
,”
Remote Sens.
,
8
(
7
), p.
594
.
7.
Li
,
J.
,
Liang
,
X.
,
Wei
,
Y.
,
Xu
,
T.
,
Feng
,
J.
, and
Yan
,
S.
,
2017
, “
Perceptual Generative Adversarial Networks for Small Object Detection
,”
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
,
IEEE
, pp.
1951
1959
.
8.
Lai
,
W.-S.
,
Huang
,
J.-B.
,
Ahuja
,
N.
, and
Yang
,
M.-H.
,
2017
, “
Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
,”
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
,
IEEE
, pp.
5835
5843
.
9.
Tong
,
T.
,
Li
,
G.
,
Liu
,
X.
, and
Gao
,
Q.
,
2017
, “
Image Super-Resolution Using Dense Skip Connections
,”
2017 IEEE International Conference on Computer Vision (ICCV)
,
Venice, Italy
,
Oct. 22–29
,
IEEE
, pp.
4809
4817
.
10.
Zhang
,
Y.
,
Li
,
K.
,
Li
,
K.
,
Wang
,
L.
,
Zhong
,
B.
, and
Fu
,
Y.
,
2018
, “
Image Super-Resolution Using Very Deep Residual Channel Attention Networks
,”
Proceedings of the European Conference on Computer Vision (ECCV)
,
Munich, Germany
,
Sept. 8–14
, pp.
286
301
.
11.
Dong
,
C.
,
Loy
,
C. C.
,
He
,
K.
, and
Tang
,
X.
,
2016
, “
Image Super-Resolution Using Deep Convolutional Networks
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
38
(
2
), pp.
295
307
.
12.
Dong
,
C.
,
Loy
,
C. C.
, and
Tang
,
X.
,
2016
,
Accelerating the Super-Resolution Convolutional Neural Network
,
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
.
13.
Kim
,
J.
,
Lee
,
J. K.
, and
Lee
,
K. M.
,
2016
, “
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27-30
, pp.
1646
1654
.
14.
Ledig
,
C.
,
Theis
,
L.
,
Huszár
,
F.
,
Caballero
,
J.
,
Cunningham
,
A.
,
Acosta
,
A.
,
Aitken
,
A.
, et al
,
2017
, “
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
,”
Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
,
Honolulu, HI
,
July 21–26
, pp.
4681
4690
.
15.
Goodfellow
,
I. J.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Adv. Neural Inf. Process. Syst.
16.
Wang
,
J.
, and
Perez
,
L.
,
2017
, “
The Effectiveness of Data Augmentation in Image Classification Using Deep Learning
,”
Convolutional Neural Networks for Visual Recognition.
https://arxiv.org/abs/1712.04621
17.
Zhu
,
J.-Y.
,
Park
,
T.
,
Isola
,
P.
, and
Efros
,
A. A.
,
2017
, “
Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks
,”
2017 IEEE International Conference on Computer Vision (ICCV)
,
Venice, Italy
,
Oct. 22–29
,
IEEE
, pp.
2242
2251
.
18.
Wang
,
Y.
,
Shimada
,
K.
, and
Farimani
,
A. B.
,
2021
, “
Airfoil GAN: Encoding and Synthesizing Airfoils for Aerodynamic-Aware Shape Optimization
,”
arXiv preprint
https://arxiv.org/abs/2101.04757
19.
Jiang
,
H.
,
Nie
,
Z.
,
Yeo
,
R.
,
Farimani
,
A. B.
, and
Kara
,
L. B.
,
2021
, “
StressGAN: A Generative Deep Learning Model for Two-Dimensional Stress Distribution Prediction
,”
ASME J. Appl. Mech.
,
88
(
5
), p. 051005.
20.
Zheng
,
J.
,
2020
, “A Method of Leakage Parameters Estimation for Liquid Pipelines Based on Conditional Generative Adversarial Network,” International Pipeline Conference (Vol. 84461), American Society of Mechanical Engineers, p. V003T04A007.
21.
Pant
,
P.
, and
Farimani
,
A. B.
,
2020
, “
Deep Learning for Efficient Reconstruction of High-Resolution Turbulent DNS Data
,”
arXiv preprint
https://arxiv.org/abs/2010.11348
22.
Fukami
,
K.
,
Fukagata
,
K.
, and
Taira
,
K.
,
2019
, “
Super-Resolution Reconstruction of Turbulent Flows With Machine Learning
,”
J. Fluid Mech.
,
870
, pp.
106
120
.
23.
Liu
,
B.
,
Tang
,
J.
,
Huang
,
H.
, and
Lu
,
X. Y.
,
2020
, “
Deep Learning Methods for Super-Resolution Reconstruction of Turbulent Flows
,”
Phys. Fluids
,
32
(
2
), p.
025105
.
24.
Xie
,
Y.
,
Franz
,
E.
,
Chu
,
M.
, and
Thuerey
,
N.
,
2018
, “
TempoGAN: A Temporally Coherent, Volumetric GAN for Super-Resolution Fluid Flow
,”
ACM Trans. Graph.
,
37
(
4
), pp.
1
15
.
25.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
26.
Liu
,
D.
, and
Wang
,
Y.
,
2019
, “
Multi-Fidelity Physics-Constrained Neural Network and Its Application in Materials Modeling
,”
ASME. J. Mech. Des.
,
141
(
12
), p. 121403.
27.
Mao
,
Z.
,
Jagtap
,
A. D.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Networks for High-Speed Flows
,”
Comput. Methods Appl. Mech. Eng.
,
360
, p.
112789
.
28.
Wang
,
S.
,
Teng
,
Y.
, and
Perdikaris
,
P.
,
2021
, “
Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural Networks
,”
SIAM J. Sci. Comput.
,
43
(
5
), pp.
A3055
A3081
.
29.
Fukami
,
K.
,
Nabae
,
Y.
,
Kawai
,
K.
, and
Fukagata
,
K.
,
2019
, “
Synthetic Turbulent Inflow Generator Using Machine Learning
,”
Phys. Rev. Fluids
,
4
(
6
), p.
064603
.
30.
Jiang
,
C. l.
,
Esmaeilzadeh
,
S.
,
Azizzadenesheli
,
K.
,
Kashinath
,
K.
,
Mustafa
,
M.
,
Tchelepi
,
H. A.
,
Marcus
,
P.
,
Prabhat
,
M.
, and
Anandkumar
,
A.
,
2020
, “
MESHFREEFLOWNET: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
,”
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis
,
Virtual Event
,
Nov. 9–19
,
IEEE
, pp.
1
15
.
31.
Subramaniam
,
A.
,
Wong
,
M. L.
,
Borker
,
R. D.
,
Nimmagadda
,
S.
, and
Lele
,
S. K.
,
2020
, “
Turbulence Enrichment Using Physics-Informed Generative Adversarial Networks
,”
arXiv preprint
. https://arxiv.org/abs/2003.01907
32.
Jasak
,
H.
,
2009
, “
OpenFOAM: Open Source CFD in Research and Industry
,”
Int. J. Naval Archit. Ocean Eng.
,
2
(
1
), pp.
89
94
.
33.
Deshpande
,
S. S.
,
Anumolu
,
L.
, and
Trujillo
,
M. F.
,
2012
, “
Evaluating the Performance of the Two-Phase Flow Solver InterFoam
,”
Comput. Sci. Discov.
,
5
(
1
), p.
014016
.
34.
Xu
,
W.
,
Luo
,
W.
,
Wang
,
Y.
, and
You
,
Y.
,
2020
, “
Data-Driven Three-Dimensional Super-Resolution Imaging of a Turbulent Jet Flame Using a Generative Adversarial Network
,”
Appl. Opt.
,
59
(
19
), p.
5729
.
You do not currently have access to this content.