Abstract

The recent COVID-19 pandemic reveals the vulnerability of global supply chains: the unforeseen supply crunches and unpredictable variability in customer demands lead to catastrophic disruption to production planning and management, causing wild swings in productivity for most manufacturing systems. Therefore, a smart and resilient manufacturing system (S&RMS) is promised to withstand such unexpected perturbations and adjust promptly to mitigate their impacts on the system’s stability. However, modeling the system’s resilience to the impacts of disruptive events has not been fully addressed. We investigate a generalized polynomial chaos (gPC) expansion-based discrete-event dynamic system (DEDS) model to capture uncertainties and irregularly disruptive events for manufacturing systems. The analytic approach allows a real-time optimization for production planning to mitigate the impacts of intermittent disruptive events (e.g., supply shortages) and enhance the system’s resilience. The case study on a hybrid bearing manufacturing workshop suggests that the proposed approach allows a timely intervention in production planning to significantly reduce the downtime (around one-fifth of the downtime compared to the one without controls) while guaranteeing maximum productivity under the system perturbations and uncertainties.

References

1.
Paul
,
S. K.
, and
Chowdhury
,
P.
,
2020
, “
A Production Recovery Plan in Manufacturing Supply Chains for a High-Demand Item During COVID-19
,”
Int. J. Phys. Distrib. Logist. Manage.
,
51
(
2
), pp.
104
125
.
2.
BCI
,
2019
, “
BCI Supply Chain Resilience Report 2019
,” Business Continuity Institute (BCI), Reading, UK, https://www.thebci.org/static/e5803f73-e3d5-4d78-9efb2f983f25a64d/BCISupplyChainResilienceReportOctober2019SingleLow1.pdf
3.
Goel
,
S.
,
Hawi
,
S.
,
Goel
,
G.
,
Thakur
,
V. K.
,
Agrawal
,
A.
,
Hoskins
,
C.
,
Pearce
,
O.
, et al
,
2020
, “
Resilient and Agile Engineering Solutions to Address Societal Challenges Such as Coronavirus Pandemic
,”
Mater. Today Chem.
,
17
, p.
100300
.
4.
Shen
,
W.
,
Yang
,
C.
, and
Gao
,
L.
,
2020
, “
Address Business Crisis Caused by COVID-19 With Collaborative Intelligent Manufacturing Technologies
,”
IET Collob. Intell. Manuf.
,
2
(
2
), pp.
96
99
.
5.
Belhadi
,
A.
,
Kamble
,
S.
,
Jabbour
,
C. J. C.
,
Gunasekaran
,
A.
,
Ndubisi
,
N. O.
, and
Venkatesh
,
M.
,
2021
, “
Manufacturing and Service Supply Chain Resilience to the COVID-19 Outbreak: Lessons Learned From the Automobile and Airline Industries
,”
Technol. Forecast. Soc. Change
,
163
, p.
120447
.
6.
Zhang
,
W. J.
, and
van Luttervelt
,
C. A.
,
2011
, “
Toward a Resilient Manufacturing System
,”
CIRP Ann.
,
60
(
2
), pp.
469
472
.
7.
Pearce
,
J. M.
,
2020
, “
Distributed Manufacturing of Open Source Medical Hardware for Pandemics
,”
J. Manuf. Mater. Process.
,
4
(
2
), p.
49
.
8.
Shokrani
,
A.
,
Loukaides
,
E. G.
,
Elias
,
E.
, and
Lunt
,
A. J. G.
,
2020
, “
Exploration of Alternative Supply Chains and Distributed Manufacturing in Response to COVID-19: A Case Study of Medical Face Shields
,”
Mater. Des.
,
192
, p.
108749
.
9.
Kumar
,
A.
,
Luthra
,
S.
,
Mangla
,
S. K.
, and
Kazançoğlu
,
Y.
,
2020
, “
COVID-19 Impact on Sustainable Production and Operations Management
,”
Sustainable Oper. Comput.
,
1
, pp.
1
7
.
10.
Okorie
,
O.
,
Subramoniam
,
R.
,
Charnley
,
F.
,
Patsavellas
,
J.
,
Widdifield
,
D.
, and
Salonitis
,
K.
,
2020
, “
Manufacturing in the Time of COVID-19: An Assessment of Barriers and Enablers
,”
IEEE Eng. Manage. Rev.
,
48
(
3
), pp.
167
175
.
11.
Gu
,
X.
,
Jin
,
X.
,
Ni
,
J.
, and
Koren
,
Y.
,
2015
, “
Manufacturing System Design for Resilience
,”
Procedia CIRP
,
36
, pp.
135
140
.
12.
Hu
,
Y.
,
Li
,
J.
, and
Holloway
,
L. E.
,
2008
, “
Towards Modeling of Resilience Dynamics in Manufacturing Enterprises: Literature Review and Problem Formulation
,”
2008 IEEE International Conference on Automation Science and Engineering
,
Washington, DC
,
Aug. 23–26
.
13.
Abimbola
,
M.
, and
Khan
,
F.
,
2019
, “
Resilience Modeling of Engineering Systems Using Dynamic Object-Oriented Bayesian Network Approach
,”
Comput. Ind. Eng.
,
130
, pp.
108
118
.
14.
Liu
,
J.
,
Chang
,
Q.
,
Xiao
,
G.
, and
Biller
,
S.
,
2012
, “
The Costs of Downtime Incidents in Serial Multistage Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021016
.
15.
Bukkapatnam
,
S. T.
,
Afrin
,
K.
,
Dave
,
D.
, and
Kumara
,
S. R.
,
2019
, “
Machine Learning and AI for Long-Term Fault Prognosis in Complex Manufacturing Systems
,”
CIRP Ann.
,
68
(
1
), pp.
459
462
.
16.
Mourtzis
,
D.
, and
Vlachou
,
E.
,
2018
, “
A Cloud-Based Cyber-Physical System for Adaptive Shop-Floor Scheduling and Condition-Based Maintenance
,”
J. Manuf. Syst.
,
47
, pp.
179
198
.
17.
Yang
,
H.
,
Bukkapatnam
,
S. T. S.
, and
Barajas
,
L. G.
,
2013
, “
Continuous Flow Modelling of Multistage Assembly Line System Dynamics
,”
Int. J. Comput. Integr. Manuf.
,
26
(
5
), pp.
401
411
.
18.
Haldar
,
A.
,
Ray
,
A.
,
Banerjee
,
D.
, and
Ghosh
,
S.
,
2014
, “
Resilient Supplier Selection Under a Fuzzy Environment
,”
Int. J. Manag. Sci. Eng. Manage.
,
9
(
2
), pp.
147
156
.
19.
Pettit
,
T. J.
,
Fiksel
,
J.
, and
Croxton
,
K. L.
,
2010
, “
Ensuring Supply Chain Resilience: Development of a Conceptual Framework
,”
J. Bus. Logist.
,
31
(
1
), pp.
1
21
.
20.
Wang
,
Z.
,
Bukkapatnam
,
S. T.
,
Kumara
,
S. R.
,
Kong
,
Z.
, and
Katz
,
Z.
,
2014
, “
Change Detection in Precision Manufacturing Processes Under Transient Conditions
,”
CIRP Ann.
,
63
(
1
), pp.
449
452
.
21.
Cheng
,
C.
,
Sa-Ngasoongsong
,
A.
,
Beyca
,
O.
,
Le
,
T.
,
Yang
,
H.
,
Kong
,
Z.
, and
Bukkapatnam
,
S. T.
,
2015
, “
Time Series Forecasting for Nonlinear and Non-Stationary Processes: A Review and Comparative Study
,”
IIE Trans.
,
47
(
10
), pp.
1053
1071
.
22.
Wang
,
Z.
, and
Bukkapatnam
,
S. T. S.
,
2018
, “
A Dirichlet Process Gaussian State Machine Model for Change Detection in Transient Processes
,”
Technometrics
,
60
(
3
), pp.
373
385
.
23.
Ismagilov
,
R. F.
,
Stroock
,
A. D.
,
Kenis
,
P. J.
,
Whitesides
,
G.
, and
Stone
,
H. A.
,
2000
, “
Experimental and Theoretical Scaling Laws for Transverse Diffusive Broadening in Two-Phase Laminar Flows in Microchannels
,”
Appl. Phys. Lett.
,
76
(
17
), pp.
2376
2378
.
24.
Glock
,
C. H.
, and
Grosse
,
E. H.
,
2021
, “
The Impact of Controllable Production Rates on the Performance of Inventory Systems: A Systematic Review of the Literature
,”
Eur. J. Oper. Res.
,
288
(
3
), pp.
703
720
.
25.
Kayan
,
R. K.
, and
Akturk
,
M. S.
,
2005
, “
A New Bounding Mechanism for the CNC Machine Scheduling Problems With Controllable Processing Times
,”
Eur. J. Oper. Res.
,
167
(
3
), pp.
624
643
.
26.
Renna
,
P.
,
2013
, “
Controllable Processing Time Policies for Job Shop Manufacturing System
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2127
2136
.
27.
Shabtay
,
D.
, and
Zofi
,
M.
,
2018
, “
Single Machine Scheduling With Controllable Processing Times and an Unavailability Period to Minimize the Makespan
,”
Int. J. Prod. Econ.
,
198
, pp.
191
200
.
28.
Kim
,
J.-H.
, and
Lee
,
T.-E.
,
2008
, “
Schedulability Analysis of Time-Constrained Cluster Tools With Bounded Time Variation by an Extended Petri Net
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
3
), pp.
490
503
.
29.
Wu
,
N.
, and
Zhou
,
M.
,
2011
, “
Schedulability Analysis and Optimal Scheduling of Dual-Arm Cluster Tools With Residency Time Constraint and Activity Time Variation
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
1
), pp.
203
209
.
30.
Wu
,
N. Q.
, and
Zhou
,
M.
,
2012
, “
Modeling, Analysis and Control of Dual-Arm Cluster Tools With Residency Time Constraint and Activity Time Variation Based on Petri Nets
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
2
), pp.
446
454
.
31.
Liang
,
S.
,
Rajora
,
M.
,
Liu
,
X.
,
Yue
,
C.
,
Zou
,
P.
, and
Wang
,
L.
,
2016
, “
Intelligent Manufacturing Systems: A Review
,”
Int. J. Mech. Eng. Robot. Res.
,
7
(
2
), pp.
324
330
.
32.
Govindan
,
K.
,
Mina
,
H.
,
Esmaeili
,
A.
, and
Gholami-Zanjani
,
S. M.
,
2020
, “
An Integrated Hybrid Approach for Circular Supplier Selection and Closed Loop Supply Chain Network Design Under Uncertainty
,”
J. Clean. Prod.
,
242
, p.
118317
.
33.
Vannucci
,
G.
, and
Teich
,
M. C.
,
1978
, “
Effects of Rate Variation on the Counting Statistics of Dead-Time-Modified Poisson Processes
,”
Opt. Commun.
,
25
(
2
), pp.
267
272
.
34.
Sivakumar
,
A. I.
, and
Chong
,
C. S.
,
2001
, “
A Simulation Based Analysis of Cycle Time Distribution, and Throughput in Semiconductor Backend Manufacturing
,”
Comput. Ind.
,
45
(
1
), pp.
59
78
.
35.
Widrow
,
B.
, and
Kollár
,
I.
,
2008
,
Quantization Noise
,
Cambridge University Press
,
Cambridge
, p.
228
.
36.
Millstein
,
M. A.
, and
Martinich
,
J. S.
,
2014
, “
Takt Time Grouping: Implementing Kanban-Flow Manufacturing in an Unbalanced, High Variation Cycle-Time Process With Moving Constraints
,”
Int. J. Prod. Res.
,
52
(
23
), pp.
6863
6877
.
37.
Xiu
,
D.
,
Lucor
,
D.
,
Su
,
C.-H.
, and
Em Karniadakis
,
G.
,
2003
, “Performance Evaluation of Generalized Polynomial Chaos,”
Computational Science
,
P. M. A.
Sloot
,
D.
Abramson
,
A. V.
Bogdanov
,
Y. E.
Gorbachev
,
J. J.
Dongarra
, and
A. Y.
Zomaya
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
346
354
.
38.
Che
,
Y.
, and
Cheng
,
C.
,
2018
, “
Uncertainty Quantification in Stability Analysis of Chaotic Systems With Discrete Delays
,”
Chaos Solit. Fractals
,
116
, pp.
208
214
.
39.
Xiu
,
D.
, and
Em Karniadakis
,
G.
,
2002
, “
Modeling Uncertainty in Steady State Diffusion Problems Via Generalized Polynomial Chaos
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
43
), pp.
4927
4948
.
40.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
41.
Xiu
,
D.
, and
Em Karniadakis
,
G.
,
2003
, “
Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
187
(
1
), pp.
137
167
.
42.
Kiesmüller
,
G. P.
, and
Zimmermann
,
J.
,
2018
, “
The Influence of Spare Parts Provisioning on Buffer Size in a Production System
,”
IISE Trans.
,
50
(
5
), pp.
367
380
.
43.
Qamsane
,
Y.
,
Phillips
,
J. R.
,
Savaglio
,
C.
,
Warner
,
D.
,
James
,
S. C.
, and
Barton
,
K.
,
2022
, “
Open Process Automation-and Digital Twin-Based Performance Monitoring of a Process Manufacturing System
,”
IEEE Access
,
10
, pp.
60823
60835
.
44.
Burnwal
,
S.
, and
Sankha
,
D.
,
2013
, “
Scheduling Optimization of Flexible Manufacturing System Using Cuckoo Search-Based Approach
,”
Int. J. Adv. Manuf. Technol.
,
64
(
5
), pp.
951
959
.
45.
Nwanya
,
S. C.
,
Udofia
,
J. I.
, and
Ajayi
,
O. O.
,
2017
, “
Optimization of Machine Downtime in the Plastic Manufacturing
,”
Cogent Eng.
,
4
(
1
), p.
1335444
.
46.
Shabtay
,
D.
,
2021
, “
Single-Machine Scheduling With Machine Unavailability Periods and Resource Dependent Processing Times
,”
Eur. J. Oper. Res.
,
296
(
2
), pp.
423
439
.
47.
Powell
,
M. J.
,
2007
, “
A View of Algorithms for Optimization Without Derivatives
,”
Math. Today-Bull. Inst. Math. Appl.
,
43
(
5
), pp.
170
174
.
48.
Matloff
,
N.
“Introduction to Discrete-Event Simulation and the SimPy Language,” p.
33
.
49.
Prak
,
D.
, and
Rogetzer
,
P.
,
2022
, “
Timing Intermittent Demand With Time-Varying Order-Up-to Levels
,”
Eur. J. Oper. Res.
,
303
(
3
), pp.
1126
1136
.
50.
Harrison
,
R. L.
,
2010
, “
Introduction to Monte Carlo Simulation
,”
AIP Conf. Proc.
,
1204
(
1
), pp.
17
21
.
You do not currently have access to this content.