Abstract

Robot-mounted grippers are used to position, immobilize, and manipulate parts and assemblies during manufacturing. In the design of these systems, the gripper assembly, comprising the grippers that grasp the part and the frame that holds them together, is customized to each part. Due to the large number of design variables and unique design needs for each gripper, automation of gripper assemblies has been limited, especially where multiple gripper types are used to grasp a part. To this end, this article presents an evolutionary approach that synthesizes and optimizes grasps and gripper assembly layouts using two different gripper types—suction cups and magnets—from the geometric models of sheet metal parts. The method first generates an option space of gripper placement on the suitable faces of the part model. Then, a genetic algorithm generates grasps on this option space by varying both the count and locations of each gripper type. Through generations, these grasps are optimized against five criteria and one constraint: factor of safety, cost, residual moment, deflection, frame weight, and gripper clearance. These criteria are then combined into a single criterion that represents a pareto condition for assessing the grasps. The algorithm is implemented in software code for validation, and the article presents detailed validation of the algorithm using four sheet metal parts. The results show that the algorithm improves the grasp from all six aspects, when started from either program-assigned or user-defined initial grasps. The high agreement between the final grasp designs resulting from multiple runs of the algorithm on a part illustrates the stability and repeatability of the algorithm.

References

1.
Agrawal
,
V. P.
,
Verma
,
A.
, and
Agrawal
,
S.
,
1992
, “
Computer-Aided Evaluation and Selection of Optimum Grippers
,”
Int. J. Prod. Res.
,
30
(
11
), pp.
2713
2732
.
2.
Manivannan
,
S.
,
1993
, “
Robotic Collision Avoidance in a Flexible Assembly Cell Using a Dynamic Knowledge Base
,”
IEEE Trans. Syst. Man. Cybern.
,
23
(
3
), pp.
766
782
.
3.
Censor
,
Y.
,
1977
, “
Pareto Optimality in Multiobjective Problems
,”
Appl. Math. Optim.
,
4
(
1
), pp.
41
59
.
4.
Cutkosky
,
M. R.
,
1989
, “
On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks
,”
IEEE Trans. Rob. Autom.
,
5
(
3
), pp.
269
279
.
5.
Pham
,
D. T.
,
Gourashi
,
N. S.
, and
Eldukhri
,
E. E.
,
2007
, “
Automated Configuration of Gripper Systems for Assembly Tasks
,”
Proc. Inst. Mech. Eng. B: J. Eng. Manuf.
,
221
(
11
), pp.
1643
1649
.
6.
Trinkle
,
J. C.
,
1992
, “
A Quantitative Test for Form Closure Grasps
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Raleigh, NC
,
July 7–10
, IEEE, pp.
1670
1677
.
7.
Pham
,
D. T.
, and
Tacgin
,
E.
,
1992
, “
Grippex: A Hybrid Expert System for Selecting Robot Gripper Types
,”
Int. J. Mach. Tools Manuf.
,
32
(
3
), pp.
349
360
.
8.
Pham
,
D. T.
, and
Yeo
,
S. H.
,
1988
, “
A Knowledge-Based System for Robot Gripper Selection: Criteria for Choosing Grippers and Surfaces for Gripping
,”
Int. J. Mach. Tools Manuf.
,
28
(
4
), pp.
301
313
.
9.
Causey
,
G.
,
2003
, “
Guidelines for the Design of Robotic Gripping Systems
,”
Assembl. Autom.
,
23
(
1
), pp.
18
28
.
10.
Causey
,
G. C.
, and
Quinn
,
R. D.
,
1998
, “
Gripper Design Guidelines for Modular Manufacturing
,”
Proceedings of 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)
,
Leuven, Belgium
,
May 20
, IEEE, pp.
1453
1458
.
11.
Fantoni
,
G.
,
Santochi
,
M.
,
Dini
,
G.
,
Tracht
,
K.
,
Scholz-Reiter
,
B.
,
Fleischer
,
J.
,
Kristoffer Lien
,
T.
, et al
,
2014
, “
Grasping Devices and Methods in Automated Production Processes
,”
CIRP Ann.
,
63
(
2
), pp.
679
701
.
12.
Seliger
,
G.
,
Consiglio
,
S.
,
Odry
,
D.
, and
Zettl
,
M.
,
2005
, “
Development of Intelligent Modular Tools for Disassembly
,”
Proceedings of the 15th International CIRP Design Seminar
,
Shanghai, China
,
May 22–26
, pp.
182
187
.
13.
Ferrari
,
C.
, and
Canny
,
J.
,
1992
, “
Planning Optimal Grasps
,”
Proceedings 1992 IEEE International Conference on Robotics and Automation
,
Nice, France
,
May 12–14
, IEEE Computer Society Press, pp.
2290
2295
.
14.
Kirkpatrick
,
D.
,
Mishra
,
B.
, and
Yap
,
C.-K.
,
1992
, “
Quantitative Steinitz’s Theorems with Applications to Multifingered Grasping
,”
Discrete Comput. Geom.
,
7
(
3
), pp.
295
318
.
15.
Bicchi
,
A.
,
1995
, “
On the Closure Properties of Robotic Grasping
,”
Int. J. Rob. Res.
,
14
(
4
), pp.
319
334
.
16.
Chella
,
A.
,
Dindo
,
H.
,
Matraxia
,
F.
, and
Pirrone
,
R.
,
2008
, “
Real-Time Visual Grasp Synthesis Using Genetic Algorithms and Neural Networks
,”
AI*IA 2007: Artificial Intelligence and Human-Oriented Computing
,
Springer
,
Berlin/Heidelberg
, pp.
567
578
.
17.
Yu
,
Z.
, and
Gu
,
J.
,
2010
, “
Image-Based Grasp Synthesis Using Genetic Algorithm
,”
2010 8th World Congress on Intelligent Control and Automation
,
Jinan, China
,
July 7–9
, IEEE, pp.
6697
6702
.
18.
Park
,
Y. C.
, and
Starr
,
G. P.
,
1992
, “
Grasp Synthesis of Polygonal Objects Using a Three-Fingered Robot Hand
,”
Int. J. Rob. Res.
,
11
(
3
), pp.
163
184
.
19.
Mirtich
,
B.
, and
Canny
,
J.
,
1994
, “
Easily Computable Optimum Grasps in 2-D and 3-D
,”
Proceedings of the 1994 IEEE International Conference on Robotics and Automation
,
San Diego, CA
,
May 8–13
, IEEE Computer Society Press, pp.
739
747
.
20.
Kim
,
B.-H.
,
Oh
,
S.-R.
,
Yi
,
B.-J.
, and
Suh
,
I. H.
,
2001
, “
Optimal Grasping Based on Non-Dimensionalized Performance Indices
,”
Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)
,
Maui, HI
,
Oct. 29–Nov. 3
, IEEE, pp.
949
956
.
21.
Chinellato
,
E.
,
Fisher
,
R. B.
,
Morales
,
A.
, and
del Pobil
,
A. P.
,
2003
, “
Ranking Planar Grasp Configurations for a Three-Finger Hand
,”
2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)
,
Taipei, Taiwan
,
Nov. 14–19
, IEEE, pp.
1133
1138
.
22.
Chinellato
,
E.
,
Morales
,
A.
,
Fisher
,
R. B.
, and
DelPobil
,
A. P.
,
2005
, “
Visual Quality Measures for Characterizing Planar Robot Grasps
,”
IEEE Trans. Syst., Man Cybern., Part C
,
35
(
1
), pp.
30
41
.
23.
Supuk
,
T.
,
Kodek
,
T.
, and
Bajd
,
T.
,
2005
, “
Estimation of Hand Preshaping During Human Grasping
,”
Med. Eng. Phys.
,
27
(
9
), pp.
790
797
.
24.
Ponce
,
J.
,
Sullivan
,
S.
,
Sudsang
,
A.
,
Boissonnat
,
J.-D.
, and
Merlet
,
J.-P.
,
1997
, “
On Computing Four-Finger Equilibrium and Force-Closure Grasps of Polyhedral Objects
,”
Int. J. Rob. Res.
,
16
(
1
), pp.
11
35
.
25.
Liu
,
Y.-H.
,
Lam
,
M.-L.
, and
Ding
,
D.
,
2004
, “
A Complete and Efficient Algorithm for Searching 3-D Form-Closure Grasps in the Discrete Domain
,”
IEEE Trans. Rob.
,
20
(
5
), pp.
805
816
.
26.
Roa
,
M. A.
, and
Suárez
,
R.
,
2015
, “
Grasp Quality Measures: Review and Performance
,”
Auton. Rob.
,
38
(
1
), pp.
65
88
.
27.
Rong
,
Y. K.
,
Huang
,
S. H.
, and
Hou
,
Z.
,
2005
,
Advanced Computer-Aided Fixture Design
,
Elsevier
,
New York
.
28.
Schmalz
,
J.
,
Giering
,
L.
,
Hölzle
,
M.
,
Huber
,
N.
, and
Reinhart
,
G.
,
2016
, “
Method for the Automated Dimensioning of Gripper Systems
,”
Proc. CIRP
,
44
(
1
), pp.
239
244
.
29.
Xu
,
J.
,
Wan
,
W.
,
Koyama
,
K.
,
Domae
,
Y.
, and
Harada
,
K.
,
2021
, “
Selecting and Designing Grippers for an Assembly Task in a Structured Approach
,”
Adv. Rob.
,
35
(
6
), pp.
381
397
.
30.
Saravanan
,
R.
,
Ramabalan
,
S.
,
Ebenezer
,
N. G. R.
, and
Dharmaraja
,
C.
,
2009
, “
Evolutionary Multi Criteria Design Optimization of Robot Grippers
,”
Appl. Soft Comput. J.
,
9
(
1
), pp.
159
172
.
31.
Nguyen
,
V. D.
,
1988
, “
Constructing Force-Closure Grasps
,”
Int. J. Rob. Res.
,
7
(
3
), pp.
3
16
.
32.
Nguyen
,
V. D.
,
1987
, “
Constructing Force-Closure Grasps in 3D
,”
Proceedings. 1987 IEEE International Conference on Robotics and Automation
,
Raleigh, NC
,
Mar. 31–Apr. 3
, pp.
240
245
.
33.
Li
,
J.-W.
,
Liu
,
H.
, and
Cai
,
H.-G.
,
2003
, “
On Computing Three-Finger Force-Closure Grasps of 2-d and 3-d Objects
,”
IEEE Trans. Rob. Autom.
,
19
(
1
), pp.
155
161
.
34.
Roa
,
M. A.
, and
Suárez
,
R.
,
2009
, “
Finding Locally Optimum Force-Closure Grasps
,”
Robot Comput. Integr. Manuf.
,
25
(
3
), pp.
536
544
.
35.
Liu
,
S.
, and
Carpin
,
S.
,
2015
, “
Global Grasp Planning Using Triangular Meshes
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 25–30
, IEEE, pp.
4904
4910
.
36.
Wan
,
W.
,
Harada
,
K.
, and
Kanehiro
,
F.
,
2021
, “
Planning Grasps With Suction Cups and Parallel Grippers Using Superimposed Segmentation of Object Meshes
,”
IEEE Trans. Rob.
,
37
(
1
), pp.
166
184
.
37.
Sahbani
,
A.
,
El-Khoury
,
S.
, and
Bidaud
,
P.
,
2012
, “
An Overview of 3D Object Grasp Synthesis Algorithms
,”
Rob. Auton. Syst.
,
60
(
3
), pp.
326
336
.
38.
Vikhar
,
P. A.
,
2016
, “
Evolutionary Algorithms: A Critical Review and its Future Prospects
,”
2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC)
,
Jalgaon, India
,
Dec. 22–24
, IEEE, pp.
261
265
.
39.
Holland
,
J. H.
,
1992
,
Adaptation in Natural and Artificial Systems
,
MIT Press
,
Boston, MA
.
40.
Russell
,
S.
, and
Norvig
,
P.
,
2010
,
Artificial Intelligence: A Modern Approach
,
Prentice Hall Press
,
Upper Saddle River, NJ
.
41.
Fernandez
,
J. J.
, and
Walker
,
I. D.
,
1998
, “
Biologically Inspired Robot Grasping Using Genetic Programming
,”
Proceedings of 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)
,
Leuven, Belgium
,
May 20
, IEEE, pp.
3032
3039
.
42.
Zhang
,
Z.
, and
Gu
,
J.
,
2012
, “
Grasp Planning of 3D Objects Using Genetic Algorithm
,”
2012 IEEE International Conference on Automation and Logistics
,
Zhengzhou, China
,
Aug. 15–17
, IEEE, pp.
646
651
.
43.
Rakesh
,
V.
,
Sharma
,
U.
,
Murugan
,
S.
,
Venugopal
,
S.
, and
Asokan
,
T.
,
2018
, “
Optimizing Force Closure Grasps on 3D Objects Using a Modified Genetic Algorithm
,”
Soft Comput.
,
22
(
3
), pp.
759
772
.
44.
Roa
,
M. A.
, and
Suarez
,
R.
,
2007
, “
Geometrical Approach for Grasp Synthesis on Discretized 3d Objects
,”
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
, IEEE, pp.
3283
3288
.
45.
Zhang
,
M. T.
, and
Goldberg
,
K.
,
2004
, “
A Computer-Aided Design Tool in Java for Planar Gripper Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
1
), pp.
43
48
.
46.
Streusand
,
D. B.
, and
Turner
,
C. J.
,
2012
, “
A Design Methodology Based Process for Robotic Gripper Design
,”
Proceedings of the 2012 ASME IDETC/CIE, American Society of Mechanical Engineers Digital Collection
,
Chicago, IL
,
Aug. 12–15
, pp.
345
358
.
47.
Hussain
,
S.
,
Jamwal
,
P. K.
,
Kapsalyamov
,
A.
, and
Ghayesh
,
M. H.
,
2021
, “
Numerical Framework and Design Optimization of an Intrinsically Compliant 3-DOF Parallel Robot
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021008
.
48.
Aderiani
,
A. R.
,
Warmefjord
,
K.
, and
Soderberg
,
R.
,
2020
, “
An Improved Phenotype-Genotype Mapping for Solving Selective Assembly Problem Using Evolutionary Optimization Algorithms
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061010
.
49.
Leon
,
J. C.
,
Dupeux
,
T.
,
Chardonnet
,
J. R.
, and
Perret
,
J.
,
2016
, “
Dexterous Grasping Tasks Generated With an Add-on End Effector of a Haptic Feedback System
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
3
), p.
030903
.
50.
Poudel
,
L.
,
Zhou
,
W.
, and
Sha
,
Z.
,
2020
, “
A Generative Approach for Scheduling Multi-Robot Cooperative Three-Dimensional Printing
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061011
.
51.
Li
,
Y.
, and
Kesavadas
,
T.
,
2022
, “
SSVEP-Based Brain-Computer Interface for Part-Picking Robotic Co-Worker
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021001
.
52.
Kurrek
,
P.
,
Zoghlami
,
F.
,
Jocas
,
M.
,
Stoelen
,
M.
, and
Salehi
,
V.
,
2020
, “
Q-Model: An Artificial Intelligence Based Methodology for the Development of Autonomous Robots
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061006
.
53.
Tribaldos
,
J. A.
, and
Sen
,
C.
,
2021
, “
Evolutionary Grasp Planning for Sheet Metal Parts With Multi-Type Grippers
,”
Proceedings of the ASME Design Engineering Technical Conference, American Society of Mechanical Engineers Digital Collection
,
Virtual, Online
,
Aug. 17–19
.
54.
Hibbeler
,
R. C.
,
2016
,
Engineering Mechanics: Statics
,
Pearson
,
Lafayette
.
55.
Hummel
,
J. A.
,
1967
, “
Multivalent Starlike Functions
,”
J. Anal. Math.
,
18
(
1
), pp.
133
160
.
You do not currently have access to this content.