Abstract

In this paper, we discuss the convergence of recent advances in deep neural networks (DNNs) with the design of robotic mechanisms, which entails the conceptualization of the design problem as a learning problem from the space of design specifications to a parameterization of the space of mechanisms. We identify three key inter-related problems that are at the forefront of using the versatility of DNNs in solving mechanism design problems. The first problem is that of representation of mechanisms and their design specifications, where the representation challenges arise primarily from the non-Euclidean nature of the data. The second problem is that of developing a mapping from the space of design specifications to the mechanisms where, ideally, we would like to synthesize both type and dimensions of the mechanism for a wide variety of design specifications including path synthesis, motion synthesis, constraints on pivot locations, etc. The third problem is that of designing the neural network architecture for end-to-end training and generation of multiple candidate mechanisms for a given design specification. We also present a brief overview of the state-of-the-art on each of these problems and identify questions of potential interest to the research community.

References

1.
Hornik
,
K.
,
Stinchcombe
,
M. B.
, and
White
,
H. L.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Netw.
,
2
(
5
), pp.
359
366
.
2.
Hornik
,
K.
,
1991
, “
Approximation Capabilities of Multilayer Feedforward Networks
,”
Neural Netw.
,
4
(
2
), pp.
251
257
.
3.
Kratsios
,
A.
, and
Bilokopytov
,
E.
,
2020
, “
Non-Euclidean Universal Approximation
,”
Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS’20
,
Virtual
, Curran Associates Inc.
4.
Schulz
,
H.
, and
Behnke
,
S.
,
2012
, “
Deep Learning
,”
KI - Künstliche Intelligenz
,
26
(
4
), pp.
357
363
.
5.
Bengio
,
Y.
,
Courville
,
A.
, and
Vincent
,
P.
,
2013
, “
Representation Learning: A Review and New Perspectives
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
35
(
8
), pp.
1798
1828
.
6.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
7.
Zhou
,
D.-X.
,
2019
, “
Universality of Deep Convolutional Neural Networks
,”
Appl. Comput. Harmonic Anal.
,
48
(
2
), pp.
787
794
.
8.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
Imagenet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
9.
Scarselli
,
F.
,
Gori
,
M.
,
Tsoi
,
A. C.
,
Hagenbuchner
,
M.
, and
Monfardini
,
G.
,
2009
, “
The Graph Neural Network Model
,”
IEEE Trans. Neural Netw.
,
20
(
1
), pp.
61
80
.
10.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L.
, and
Polosukhin
,
I.
,
2017
, “
Attention is All You Need
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17
,
Long Beach, CA
,
Dec. 4–9
, Curran Associates Inc., pp.
6000
6010
.
11.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
12.
Panchal
,
J. H.
,
Fuge
,
M.
,
Liu
,
Y.
,
Missoum
,
S.
, and
Tucker
,
C.
,
2019
, “
Machine Learning for Engineering Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
110301
.
13.
Vasiliu
,
A.
, and
Yannou
,
B.
,
2001
, “
Dimensional Synthesis of Planar Mechanisms Using Neural Networks: Application to Path Generator Linkages
,”
Mech. Mach. Theory
,
36
(
2
), pp.
299
310
.
14.
Galan-Marin
,
G.
,
Alonso
,
F. J.
, and
Del Castillo
,
J. M.
,
2009
, “
Shape Optimization for Path Synthesis of Crank-Rocker Mechanisms Using a Wavelet-Based Neural Network
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1132
1143
.
15.
Khan
,
N.
,
Ullah
,
I.
, and
Al-Grafi
,
M.
,
2015
, “
Dimensional Synthesis of Mechanical Linkages Using Artificial Neural Networks and Fourier Descriptors
,”
Mech. Sci.
,
6
(
1
), pp.
29
34
.
16.
Ge
,
Q.
,
Purwar
,
A.
,
Zhao
,
P.
, and
Deshpande
,
S.
,
2017
, “
A Task-Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of G-Manifolds
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031011
.
17.
Purwar
,
A.
,
Deshpande
,
S.
, and
Ge
,
Q. J.
,
2017
, “
Motiongen: Interactive Design and Editing of Planar Four-Bar Motions Via a Unified Framework for Generating Pose- and Geometric-Constraints
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
024504
.
18.
Deshpande
,
S.
, and
Purwar
,
A.
,
2017
, “
A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061005
.
19.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021004
.
20.
Deshpande
,
S.
, and
Purwar
,
A.
,
2020
, “
An Image-Based Approach to Variational Path Synthesis of Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021005
.
21.
Mcgarva
,
J.
, and
Mullineux
,
G.
,
1993
, “
Harmonic Representation of Closed Curves
,”
Appl. Math. Model.
,
17
(
4
), pp.
213
218
.
22.
Mcgarva
,
J. R.
,
1994
, “
Rapid Search and Selection of Path Generating Mechanisms From a Library
,”
Mech. Mach. Theory
,
29
(
2
), pp.
223
235
.
23.
Ullah
,
I.
, and
Kota
,
S.
,
1997
, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
504
510
.
24.
Wu
,
J.
,
Ge
,
Q. J.
,
Gao
,
F.
, and
Guo
,
W. Z.
,
2011
, “
On the Extension of a Fourier Descriptor Based Method for Planar Four-Bar Linkage Synthesis for Generation of Open and Closed Paths
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031002
.
25.
Li
,
X.
,
Wu
,
J.
, and
Ge
,
Q. J.
,
2016
, “
A Fourier Descriptor-Based Approach to Design Space Decomposition for Planar Motion Approximation
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064501
.
26.
Sharma
,
S.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2019
, “
An Optimal Parametrization Scheme for Path Generation Using Fourier Descriptors for Four-Bar Mechanism Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
014501
.
27.
Chuang
,
G. C.-H.
, and
Kuo
,
C.-C. J.
,
1996
, “
Wavelet Descriptor of Planar Curves: Theory and Applications
,”
IEEE Trans. Image Process.
,
5
(
1
), pp.
56
70
.
28.
Nabout
,
A. A.
, and
Tibken
,
B.
,
2005
, “
Wavelet Descriptors for Object Recognition Using Mexican Hat Function
,”
IFAC Proc.
,
38
(
1
), pp.
1107
1112
.
29.
Liu
,
W.
,
Sun
,
J.
,
Zhang
,
B.
, and
Chu
,
J.
,
2018
, “
Wavelet Feature Parameters Representations of Open Planar Curves
,”
Appl. Math. Modell.
,
57
, pp.
614
624
.
30.
Sun
,
J.
,
Liu
,
W.
, and
Chu
,
J.
,
2015
, “
Dimensional Synthesis of Open Path Generator of Four-Bar Mechanisms Using the Haar Wavelet
,”
ASME J. Mech. Des.
,
137
(
8
), p.
082303
.
31.
Osowski
,
S.
, and
Nghia
,
D. D.
,
2002
, “
Fourier and Wavelet Descriptors for Shape Recognition Using Neural Networks—A Comparative Study
,”
Pattern Recogn.
,
35
(
9
), pp.
1949
1957
.
32.
Bronstein
,
M. M.
,
Bruna
,
J.
,
LeCun
,
Y.
,
Szlam
,
A.
, and
Vandergheynst
,
P.
,
2017
, “
Geometric Deep Learning: Going Beyond Euclidean Data
,”
IEEE Signal Process. Mag.
,
34
(
4
), pp.
18
42
.
33.
Cao
,
W.
,
Yan
,
Z.
,
He
,
Z.
, and
He
,
Z.
,
2020
, “
A Comprehensive Survey on Geometric Deep Learning
,”
IEEE Access
,
8
, pp.
35929
35949
.
34.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
Computational Creativity Via Assisted Variational Synthesis of Mechanisms Using Deep Generative Models
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121402
.
35.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “
Auto-Encoding Variational Bayes
,” Computing Research Repository, abs/1312.6114.
36.
Kingma
,
D. P.
, and
Welling
,
M.
,
2019
, “
An Introduction to Variational Autoencoders
,”
Found. Trends® Mach Learn.
,
12
(
4
), pp.
307
392
.
37.
Creswell
,
A.
,
White
,
T.
,
Dumoulin
,
V.
,
Arulkumaran
,
K.
,
Sengupta
,
B.
, and
Bharath
,
A. A.
,
2018
, “
Generative Adversarial Networks: An Overview
,”
IEEE Signal Process. Mag.
,
35
(
1
), pp.
53
65
.
38.
Sharma
,
S.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2019
, “
A Motion Synthesis Approach to Solving Alt-burmester Problem by Exploiting Fourier Descriptor Relationship Between Path and Orientation Data
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011016
.
39.
Sharma
,
S.
, and
Purwar
,
A.
,
2022
, “
A Machine Learning Approach to Solve the Alt-burmester Problem for Synthesis of Defect-Free Spatial Mechanisms.
,”
J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021003
.
40.
Tsai
,
L.
,
2001
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press LLC
,
Boca Raton, FL
.
41.
Zhao
,
P.
,
Li
,
X.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2016
, “
A Task-Driven Unified Synthesis of Planar Four-Bar and Six-Bar Linkages With R- and P-Joints for Five-Position Realization
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061003
.
42.
Sharma
,
S.
, and
Purwar
,
A.
,
2020
, “
Using a Point-Line-Plane Representation for Unified Simulation of Planar and Spherical Mechanisms
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061002
.
43.
Ophaswongse
,
C.
, and
Agrawal
,
S. K.
,
2020
, “
Optimal Design of a Novel 3-dof Orientational Parallel Mechanism for Pelvic Assistance on a Wheelchair: An Approach Based on Kinematic Geometry and Screw Theory
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
3315
3322
.
44.
Murray
,
R. C.
,
Ophaswongse
,
C.
,
Park
,
J. H.
, and
Agrawal
,
S. K.
,
2020
, “
Characterizing Torso Stiffness in Female Adolescents With and Without Scoliosis
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1634
1641
.
45.
Ophaswongse
,
C.
,
Lent
,
V.
, and
Agrawal
,
S. K.
,
2022
, “
Kinematic Validation of a Robotic Exoskeleton for Assisting Seated Pelvic Movements by Wheelchair Users With Trunk Impairments
,”
2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob)
,
Seoul, South Korea
, Aug. 21–24, pp.
1
6
.
46.
Oring
,
A.
,
Yakhini
,
Z.
, and
Hel-Or
,
Y.
,
2020
, “
Faithful Autoencoder Interpolation by Shaping the Latent Space
,” CoRR, abs/2008.01487.
47.
Sohl-Dickstein
,
J.
,
Weiss
,
E.
,
Maheswaranathan
,
N.
, and
Ganguli
,
S.
,
2015
,
Deep Unsupervised Learning Using Nonequilibrium Thermodynamics
,
PMLR
, pp.
2256
2265
.
48.
Dhariwal
,
P.
, and
Nichol
,
A.
,
2021
, “
Diffusion Models Beat GANs on Image Synthesis
,”
Adv. Neural Inform. Process. Syst.
,
34
, pp.
8780
8794
.
49.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
U.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Adv. Neural Inform. Process. Syst.
,
Long Beach, CA
.
50.
Wolf
,
T.
,
Debut
,
L.
,
Sanh
,
V.
,
Chaumond
,
J.
,
Delangue
,
C.
,
Moi
,
A.
,
Cistac
,
P.
,
Rault
,
T.
,
Louf
,
R.
,
Funtowicz
,
M.
, and
Brew
,
J.
,
2019
, “
Transformers: State-of-the-Art Natural Language Processing
,”
Conference on Empirical Methods in Natural Language Processing
,
Hong Kong, China
.
51.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
52.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
You do not currently have access to this content.