Abstract

This paper introduces a novel matrix-based approach for the simultaneous type and dimensional synthesis of planar four-bar linkage mechanisms, accommodating various practical constraints, including position, velocity, acceleration, and joint placements. Traditional design processes segregate type synthesis, the determination of joint and link configurations, from dimensional synthesis, which involves specifying link sizes and pivot locations. This segregation often leads to complexities in addressing the complete design challenge. The novel methodology proposed in this paper departs from the conventional sequential design approach by concurrently evaluating type and dimensional parameters using a data-driven matrix formulation. The crux of the paper’s methodology involves formulating a singular design equation through a transformation matrix, parameterized by the Cartesian parameters of the mechanism’s dyads. This formulation linearly expresses a broad range of constraints, facilitating the identification of viable solutions through singular value decomposition and null space analysis. This integrated approach not only simplifies the synthesis process but also provides direct insights into the mechanism’s parameters, encompassing both type and dimensions, thereby obviating the need for further interpretative steps common to the use of quaternions and kinematic mapping. In essence, the paper presents two main contributions: the development of a unified design equation capable of encompassing a wide array of constraints within the mechanism synthesis process, and the introduction of an algorithm that effectively identifies all potential planar four-bar linkage mechanisms by accurately satisfying up to five constraints. This approach promises to enhance the design and optimization of mechanical systems by offering a more holistic and efficient pathway to mechanism synthesis.

References

1.
Hamilton
,
W. R.
,
1853
,
Lectures on Quaternions
,
Hodges Smith & Co.
,
Dublin, Ireland
.
2.
Shoemake
,
K.
,
1985
, “
Animating Rotation With Quaternion Curves
,”
SIGGRAPH 1985: 12th Annual Conference on Computer Graphics and Interactive Techniques
,
San Francisco, CA
,
July 22–26
.
3.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
The MIT Press
,
Cambridge, MA
.
4.
Bottema
,
O.
,
1973
, “
On a Set of Displacements in Space
,”
ASME J. Eng. Ind.
,
Series B 95
(
2
), pp.
451
454
.
5.
Ravani
,
B.
, and
Roth
,
B.
,
1983
, “
Motion Synthesis Using Kinematic Mappings
,”
J. Mech. Transmiss. Autom. Des.
,
105
(
3
), pp.
460
467
.
6.
Ravani
,
B.
, and
Roth
,
B.
,
1984
, “
Mappings of Spatial Kinematics
,”
J. Mech. Transmiss. Autom. Des.
,
106
(
3
), pp.
341
347
.
7.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
Dover Publication Inc.
,
New York
.
8.
Bodduluri
,
R. M. C.
, and
McCarthy
,
J. M.
,
1992
, “
Finite Position Synthesis Using the Image Curve of a Spherical Four-Bar Motion
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
55
60
.
9.
McCarthy
,
J. M.
,
1983
, “
Planar and Spatial Rigid Body Motion as Special Cases of Spherical and 3-Spherical Motion
,”
J. Mech. Transmiss. Autom.
,
105
(
3
), pp.
569
575
.
10.
Larochelle
,
P. M.
,
1996
, “
Synthesis of Planar RR Dyads by Constraint Manifold Projection
,”
ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference
,
Irvine, CA
,
Aug. 18–22
.
11.
Larochelle
,
P.
,
2000
, “Approximate Motion Synthesis Via Parametric Constraint Manifold Fitting,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
M. M.
Stanišić
, eds.,
Springer
,
Dordrecht, Netherlands
, pp.
103
110
.
12.
Ge
,
Q. J.
, and
McCarthy
,
J. M.
,
1991
, “
The Algebraic Classification of the Image Curves of Spherical 4-Bar Motion
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
227
231
.
13.
Ge
,
Q. J.
, and
McCarthy
,
J. M.
,
1991
, “
Functional Constraints as Algebraic-Manifolds in a Clifford-Algebra
,”
IEEE Trans. Rob. Autom.
,
7
(
5
), pp.
670
677
.
14.
Park
,
F. C.
,
1995
, “
Distance Metrics on the Rigid-Body Motions With Applications to Mechanism Design
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
48
54
.
15.
Larochelle
,
P.
, and
McCarthy
,
J. M.
,
1995
, “
Planar Motion Synthesis Using an Approximate Bi-Invariant Metric
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
646
651
.
16.
Xu
,
T.
,
Myszka
,
D. H.
, and
Murray
,
A. P.
,
2024
, “
A Bi-Invariant Approach to Approximate Motion Synthesis of Planar Four-Bar Linkage
,”
Robotics
,
13
(
1
), p.
13
.
17.
Hayes
,
M. J. D.
,
Luu
,
T.
, and
Chang
,
X. W.
,
2004
, “Kinematic Mapping Application to Approximate Type and Dimension Synthesis of Planar Mechanisms,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
C.
Galletti
, eds.,
Springer
,
Dordrecht, Netherlands
, pp.
41
48
.
18.
Luu
,
T. J.
, and
Hayes
,
M. J. D.
,
2012
,
Integrated Type And Dimensional Synthesis of Planar Four-Bar Mechanisms
(
Latest Advances in Robot Kinematics
),
Springer
,
New York
.
19.
Ge
,
Q.
,
Purwar
,
A.
,
Zhao
,
P.
, and
Deshpande
,
S.
,
2017
, “
A Task-Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of G-Manifolds
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031011
.
20.
Deshpande
,
S.
, and
Purwar
,
A.
,
2017
, “
A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061005
.
21.
Purwar
,
A.
,
Deshpande
,
S.
, and
Ge
,
Q. J.
,
2017
, “
MotionGen: Interactive Design and Editing of Planar Four-Bar Motions Via a Unified Framework for Generating Pose- and Geometric-Constraints
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
024504
.
22.
Lyu
,
Z.
,
Purwar
,
A.
, and
Liao
,
W.
,
2024
, “
A Unified Real-Time Motion Generation Algorithm for Approximate Position Analysis of Planar N-Bar Mechanisms
,”
ASME J. Mech. Des.
,
146
(
6
), p.
063302
.
23.
Zhao
,
P.
,
Li
,
X.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2016
, “
A Task-Driven Unified Synthesis of Planar Four-Bar and Six-Bar Linkages With R- and P-Joints for Five-Position Realization
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061003
.
24.
Schaefer
,
R. S.
, and
Kramer
,
S. N.
,
1979
, “
Selective Precision Synthesis of Planar Mechanisms Satisfying Position and Velocity Constraints
,”
Mech. Mach. Theory
,
14
(
3
), pp.
161
170
.
25.
Holte
,
J.E.
,
1996
, “
Two Precision Position Synthesis of Planar Mechanisms with Approximate Position and Velocity Constraints
,” Ph.D dissertation,
University of St. Thomas
, Minneapolis, MN.
26.
Holte
,
J. E.
,
Chase
,
T. R.
, and
Erdman
,
A. G.
,
2001
, “
Approximate Velocities in Mixed Exact-Approximate Position Synthesis of Planar Mechanisms
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
388
394
.
27.
Robson
,
N. P.
, and
McCarthy
,
J. M.
,
2005
, “
The Synthesis of Planar 4R Linkages With Three Task Positions and Two Specified Velocities
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
,
Long Beach, CA
,
Sept. 24–28
, pp.
425
432
.
28.
Robson
,
N. P.
,
McCarthy
,
J. M.
, and
Tumer
,
I. Y.
,
2008
, “
The Algebraic Synthesis of a Spatial TS Chain for a Prescribed Acceleration Task
,”
Mech. Mach. Theory
,
43
(
10
), pp.
1268
1280
.
29.
Robson
,
N.
, and
McCarthy
,
J.
,
2009
, Applications of the Geometric Design of Mechanical Linkages With Task Acceleration Specifications. Vol. 7. 10.1115/DETC2009-87415.
30.
Coxeter
,
H.
,
1974
,
Projective Geometry
, 2nd ed.,
Springer-Verlag
,
New York
.
31.
Stolfi
,
J.
,
1991
,
Oriented Projective Geometry
,
Academic Press Professional Inc.
,
Boston, MA
.
32.
Sharma
,
S.
, and
Purwar
,
A.
,
2020
, “
Unified Motion Synthesis of Spatial Seven-Bar Platform Mechanisms and Planar-Four Bar Mechanisms
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Online
,
Aug. 17–19
.
33.
Tsuge
,
B. Y.
,
Plecnik
,
M. M.
, and
Michael McCarthy
,
J.
,
2016
, “
Homotopy Directed Optimization to Design a Six-Bar Linkage for a Lower Limb With a Natural Ankle Trajectory
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061009
.
34.
Tsuge
,
B. Y.
, and
Michael McCarthy
,
J.
,
2016
, “
An Adjustable Single Degree-of-Freedom System to Guide Natural Walking Movement for Rehabilitation
,”
ASME J. Med. Devices
,
10
(
4
), p.
044501
.
35.
Chase
,
T. R.
, and
Mirth
,
J. A.
,
1993
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
.
You do not currently have access to this content.