Abstract

Customer preferences are found to evolve over time and correlate with geographical locations. Studying the spatiotemporal heterogeneity of customer preferences is crucial to engineering design as it provides a dynamic perspective for understanding the trend of customer preferences. However, existing choice models for demand modeling do not take the spatiotemporal heterogeneity of customer preferences into consideration. Learning-based spatiotemporal data modeling methods usually require large-scale datasets for model training, which are not applicable to small aggregated data, such as the sale records of a product in several regions and years. To fill this research gap, we propose a spatial panel modeling approach to investigate the spatiotemporal heterogeneity of customer preferences. Product and regional attributes varying in time are included as model inputs to support demand forecasting in engineering design. With case studies using the dataset of small SUVs and compact sedans in China's automotive market, we demonstrate that the spatial panel modeling approach outperforms other statistical spatiotemporal data models and non-parametric regression methods in goodness of fit and prediction accuracy. We also illustrate a potential design application of the proposed approach in a portfolio optimization of two vehicles from the same producer. While the spatial panel modeling approach exists in econometrics, applying this approach to support engineering decisions by considering spatiotemporal heterogeneity and introducing engineering attributes in demand forecasting is the contribution of this work. Our paper is focused on presenting the approach rather than the results per se.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Donndelinger
,
J. A.
, and
Ferguson
,
S. M.
,
2020
, “
Design for the Marketing Mix: The Past, Present, and Future of Market-Driven Engineering Design
,”
ASME J. Mech. Des.
,
142
(
6
), p.
060801
.
2.
Jin
,
J.
,
Liu
,
Y.
,
Ji
,
P.
, and
Kwong
,
C. K.
,
2019
, “
Review on Recent Advances in Information Mining From Big Consumer Opinion Data for Product Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
010801
.
3.
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
N.
, and
Koppelman
,
F. S.
,
2010
, “
Integrated Bayesian Hierarchical Choice Modeling to Capture Heterogeneous Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121010
.
4.
Bi
,
Y.
,
Li
,
S.
,
Wagner
,
D.
, and
Reid
,
T.
,
2017
, “
The Impact of Vehicle Silhouettes on Perceptions of Car Environmental Friendliness and Safety in 2009 and 2016: A Comparative Study
,”
Des. Sci.
,
3
, p.
e23
.
5.
Mosleh
,
M.
, and
Heydari
,
B.
,
2016
, “
Spatial Diffusion of Risk: The Case of Risky Teenage Drivers
,”
5th International Engineering Systems Symposium
,
Washington, DC
,
June 27–29
.
6.
Lim
,
S.
, and
Tucker
,
C. S.
,
2016
, “
A Bayesian Sampling Method for Product Feature Extraction From Large-Scale Textual Data
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061403
.
7.
Lee
,
H.
,
Puranik
,
T. G.
, and
Mavris
,
D. N.
,
2021
, “
Deep Spatio-Temporal Neural Networks for Risk Prediction and Decision Support in Aviation Operations
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
041013
.
8.
Yu
,
T.
, and
Wang
,
J.
,
2021
, “
A Spatiotemporal Convolutional Gated Recurrent Unit Network for Mean Wave Period Field Forecasting
,”
J. Mar. Sci. Eng.
,
9
(
4
), p.
383
.
9.
Lira
,
H.
,
Martí
,
L.
, and
Sanchez-Pi
,
N.
,
2022
, “
A Graph Neural Network With Spatio-Temporal Attention for Multi-Sources Time Series Data: An Application to Frost Forecast
,”
Sensors
,
22
(
4
), p.
1486
.
10.
Bi
,
Y.
,
Qiu
,
Y.
,
Sha
,
Z.
,
Wang
,
M.
,
Fu
,
Y.
,
Contractor
,
N.
, and
Chen
,
W.
,
2021
, “
Modeling Multi-Year Customers’ Considerations and Choices in China’s Auto Market Using Two-Stage Bipartite Network Analysis
,”
Networks Spat. Econ.
,
21
(
2
), pp.
365
385
.
11.
Bonnell
,
T. R.
,
Dutilleul
,
P.
,
Chapman
,
C. A.
,
Reyna-Hurtado
,
R.
,
Hernández-Sarabia
,
R. U.
, and
Sengupta
,
R.
,
2013
, “
Analysing Small-Scale Aggregation in Animal Visits in Space and Time: The ST-BBD Method
,”
Anim. Behav.
,
85
(
2
), pp.
483
492
.
12.
Anselin
,
L.
,
2013
,
Spatial Econometrics: Methods and Models
,
Springer Science & Business Media
,
Dordrecht, Netherlands
.
13.
Baltagi
,
B.
,
2008
,
Econometric Analysis of Panel Data
,
John Wiley & Sons
,
Hoboken, NJ
.
14.
Elhorst
,
J. P.
,
2014
,
Spatial Econometrics: From Cross-Sectional Data to Spatial Panels
,
Springer
,
Berlin, New York, Dordrecht, London
.
15.
Paleti
,
R.
,
Bhat
,
C. R.
,
Pendyala
,
R. M.
, and
Goulias
,
K. G.
,
2013
, “
Modeling of Household Vehicle Type Choice Accommodating Spatial Dependence Effects
,”
Transp. Res. Rec.
,
2343
(
1
), pp.
86
94
.
16.
Bi
,
Y.
,
Xie
,
J.
,
Sha
,
Z.
,
Wang
,
M.
,
Fu
,
Y.
, and
Chen
,
W.
,
2018
, “
Modeling Spatiotemporal Heterogeneity of Customer Preferences in Engineering Design
,”
Volume 2A: 44th Design Automation Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
17.
Faghih-Imani
,
A.
, and
Eluru
,
N.
,
2016
, “
Incorporating the Impact of Spatio-Temporal Interactions on Bicycle Sharing System Demand: A Case Study of New York CitiBike System
,”
J. Transp. Geogr.
,
54
, pp.
218
227
.
18.
Christiano
,
L. J.
,
2012
, “
Christopher A. Sims and Vector Autoregressions
,”
Scand. J. Econ.
,
114
(
4
), pp.
1082
1104
.
19.
Xing
,
X.
, and
Ye
,
A.
,
2022
, “
Consumption Upgrading and Industrial Structural Change: A General Equilibrium Analysis and Empirical Test With Low-Carbon Green Transition Constraints
,”
Sustainability
,
14
(
20
), p.
13645
.
20.
Tang
,
J.
,
Gao
,
F.
,
Liu
,
F.
,
Zhang
,
W.
, and
Qi
,
Y.
,
2019
, “
Understanding Spatio-Temporal Characteristics of Urban Travel Demand Based on the Combination of GWR and GLM
,”
Sustainability
,
11
(
19
), p.
5525
.
21.
Shen
,
X.
,
Zhou
,
Y.
,
Jin
,
S.
, and
Wang
,
D.
,
2020
, “
Spatiotemporal Influence of Land Use and Household Properties on Automobile Travel Demand
,”
Transp. Res. Part D: Transp. Environ.
,
84
, p.
102359
.
22.
Sun
,
C.
, and
Lu
,
J.
,
2023
, “
The Relative Roles of Different Land-Use Types in Bike-Sharing Demand: A Machine Learning-Based Multiple Interpolation Fusion Method
,”
Inf. Fusion
,
95
, pp.
384
400
.
23.
Baltagi
,
B. H.
,
Song
,
S. H.
, and
Koh
,
W.
,
2003
, “
Testing Panel Data Regression Models With Spatial Error Correlation
,”
J. Econom.
,
117
(
1
), pp.
123
150
.
24.
Hausman
,
J. A.
,
1978
, “
Specification Tests in Econometrics
,”
Econom. J. Econom. Soc.
,
46
(
6
), pp.
1251
1271
.
25.
Ma
,
X.
,
Zhang
,
J.
,
Ding
,
C.
, and
Wang
,
Y.
,
2018
, “
A Geographically and Temporally Weighted Regression Model to Explore the Spatiotemporal Influence of Built Environment on Transit Ridership
,”
Comput. Environ. Urban Syst.
,
70
, pp.
113
124
.
26.
Millo
,
G.
, and
Piras
,
G.
,
2012
, “
Splm: Spatial Panel Data Models in R
,”
J. Stat. Softw.
,
47
(
1
), pp.
1
38
.
27.
Elhorst
,
P.
, and
Vega
,
S. H.
,
2013
, “
On Spatial Econometric Models, Spillover Effects, and W
,”
53rd Congress of the European Regional Science Association: "Regional Integration: Europe, the Mediterranean and the World Economy
,”
Palermo, Italy
,
Aug. 27–31
.
28.
Zhang
,
R.
,
Du
,
Q.
,
Geng
,
J.
,
Liu
,
B.
, and
Huang
,
Y.
,
2015
, “
An Improved Spatial Error Model for the Mass Appraisal of Commercial Real Estate Based on Spatial Analysis: Shenzhen as a Case Study
,”
Habitat Int.
,
46
, pp.
196
205
.
29.
Qu
,
X.
, and
Lee
,
L.
,
2015
, “
Estimating a Spatial Autoregressive Model With an Endogenous Spatial Weight Matrix
,”
J. Econom.
,
184
(
2
), pp.
209
232
.
30.
Baltagi
,
B. H.
,
Bresson
,
G.
, and
Pirotte
,
A.
,
2012
, “
Forecasting With Spatial Panel Data
,”
Comput. Stat. Data Anal.
,
56
(
11
), pp.
3381
3397
.
31.
Elhorst
,
J. P.
,
2014
, “Spatial Panel Data Models,”
Spatial Econometrics
,
Springer
,
New York
, pp.
37
93
.
32.
Fu
,
J. S.
,
Sha
,
Z.
,
Huang
,
Y.
,
Wang
,
M.
,
Fu
,
Y.
, and
Chen
,
W.
,
2017
, “
Two-Stage Modeling of Customer Choice Preferences in Engineering Design Using Bipartite Network Analysis
,”
Volume 2A: 43rd Design Automation Conference
,
Cleveland, OH
,
Aug. 6–9
.
33.
Bloomberg
,
2016
, “
China Auto Sales Growth Accelerates on Rising SUV Demand
,” https://www.bloomberg.com/news/articles/2016-07-08/china-auto-sales-grow-at-faster-pace-on-suv-electric-car-demand.
34.
National Bureau of Statistics of China
,
2023
, “
Regional Data: Annual by Province
,” https://data.stats.gov.cn/english/easyquery.htm?cn=E0103.
35.
Huo
,
H.
, and
Wang
,
M.
,
2012
, “
Modeling Future Vehicle Sales and Stock in China
,”
Energy Policy
,
43
, pp.
17
29
.
36.
Heckman
,
J. J.
,
1979
, “
Sample Selection Bias as a Specification Error
,”
Econom. J. Econom. Soc.
,
47
(
1
), pp.
153
161
.
37.
Choi
,
I.
,
2001
, “
Unit Root Tests for Panel Data
,”
J. Int. Money Financ.
,
20
(
2
), pp.
249
272
.
38.
Lopez
,
L.
, and
Weber
,
S.
,
2017
, “
Testing for Granger Causality in Panel Data
,”
Stata J. Promot. Commun. Stat. Stata
,
17
(
4
), pp.
972
984
.
39.
Badinger
,
H.
,
Müller
,
W.
, and
Tondl
,
G.
,
2004
, “
Regional Convergence in the European Union, 1985-1999: A Spatial Dynamic Panel Analysis
,”
Reg. Stud.
,
38
(
3
), pp.
241
253
.
40.
Bloomberg News
, “
Chinese Automakers Surge After Government Cuts Purchase Tax
.” https://www.bloomberg.com/news/articles/2015-09-29/china-reduces-small-car-purchase-tax-by-half-as-deliveries-slow.
41.
Ross Morrow
,
W.
,
Long
,
W.
, and
MacDonald
,
E. F.
,
2014
, “
Market-System Design Optimization With Consider-Then-Choose Models
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031003
.
42.
Autohome China
,
2016
, “
VW FAW Sagitar Specifications—2016 Model
,” https://car.autohome.com.cn/config/series/633-8349.html.
You do not currently have access to this content.