Abstract

In collaborative additive manufacturing (AM), sharing process data across multiple users can provide small- to medium-sized manufacturers (SMMs) with enlarged training data for part certification, facilitating accelerated adoption of metal-based AM technologies. The aggregated data can be used to develop a process-defect model that is more precise, reliable, and adaptable. However, the AM process data often contains printing path trajectory information that can significantly jeopardize intellectual property (IP) protection when shared among different users. In this study, a new adaptive AM data de-identification method is proposed that aims to mask the printing trajectory information in the AM process data in the form of melt pool images. This approach integrates stochastic image augmentation (SIA) and adaptive surrogate image generation (ASIG) via tracking melt pool geometric changes to achieve a trade-off between AM process data privacy and utility. As a result, surrogate melt pool images are generated with perturbed printing directions. In addition, a convolutional neural network (CNN) classifier is used to evaluate the proposed method regarding privacy gain (i.e., changes in the accuracy of identifying printing orientations) and utility loss (i.e., changes in the ability to detect process anomalies). The proposed method is validated using data collected from two cylindrical specimens using the directed energy deposition (DED) process. The case study results show that the de-identified dataset significantly improved privacy preservation while sacrificing little data utility, once shared on the cloud-based AM system for collaborative process-defect modeling.

References

1.
Beaman
,
J. J.
,
Bourell
,
D. L.
,
Seepersad
,
C. C.
, and
Kovar
,
D.
,
2020
, “
Additive Manufacturing Review: Early Past to Current Practice
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110812
.
2.
Kim
,
H.
,
Lin
,
Y.
, and
Tseng
,
T. L. B.
,
2018
, “
A Review on Quality Control in Additive Manufacturing
,”
Rapid Prototyp. J.
,
24
(
3
), pp.
645
669
.
3.
Thompson
,
S. M.
,
Bian
,
L.
,
Shamsaei
,
N.
, and
Yadollahi
,
A.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics
,”
Addit. Manuf.
,
8
, pp.
36
62
.
4.
Qin
,
J.
,
Hu
,
F.
,
Liu
,
Y.
,
Witherell
,
P.
,
Wang
,
C. C.
,
Rosen
,
D. W.
,
Simpson
,
T. W.
,
Lu
,
Y.
, and
Tang
,
Q.
,
2022
, “
Research and Application of Machine Learning for Additive Manufacturing
,”
Addit. Manuf.
,
52
, p.
102691
.
5.
Liu
,
C.
,
Tian
,
W.
, and
Kan
,
C.
,
2022
, “
When AI Meets Additive Manufacturing: Challenges and Emerging Opportunities for Human-Centered Products Development
,”
J. Manuf. Syst.
,
64
, pp.
648
656
.
6.
Xiang
,
L.
, and
Tsung
,
F.
,
2008
, “
Statistical Monitoring of Multi-Stage Processes Based on Engineering Models
,”
IIE Trans.
,
40
(
10
), pp.
957
970
.
7.
Wang
,
Y.
,
Lin
,
Y.
,
Zhong
,
R. Y.
, and
Xu
,
X.
,
2019
, “
IoT-Enabled Cloud-Based Additive Manufacturing Platform to Support Rapid Product Development
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3975
3991
.
8.
Bappy
,
M. M.
,
Fullington
,
D.
,
Bian
,
L.
, and
Tian
,
W.
,
2023
, “
Evaluation of Design Information Disclosure Through Thermal Feature Extraction in Metal Based Additive Manufacturing
,”
Manuf. Lett.
,
36
, pp.
86
90
.
9.
Fullington
,
D.
,
Bian
,
L.
, and
Tian
,
W.
,
2023
, “
Design De-Identification of Thermal History for Collaborative Process-Defect Modeling of Directed Energy Deposition Processes
,”
ASME J. Manuf. Sci. Eng.
,
145
(
5
), p.
051004
.
10.
Liu
,
C.
,
Le Roux
,
L.
,
Körner
,
C.
,
Tabaste
,
O.
,
Lacan
,
F.
, and
Bigot
,
S.
,
2022
, “
Digital Twin-Enabled Collaborative Data Management for Metal Additive Manufacturing Systems
,”
J. Manuf. Syst.
,
62
, pp.
857
874
.
11.
Lu
,
Y.
,
Witherell
,
P.
,
Lopez
,
F.
, and
Assouroko
,
I.
,
2016
, “
Digital Solutions for Integrated and Collaborative Additive Manufacturing
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
.
12.
Haghnegahdar
,
L.
,
Joshi
,
S. S.
, and
Dahotre
,
N. B.
,
2022
, “
From IoT-Based Cloud Manufacturing Approach to Intelligent Additive Manufacturing: Industrial Internet of Things—An Overview
,”
Int. J. Adv. Manuf. Technol.
,
119
(
3–4
), pp.
1461
1478
.
13.
Elhoone
,
H.
,
Zhang
,
T.
,
Anwar
,
M.
, and
Desai
,
S.
,
2020
, “
Cyber-Based Design for Additive Manufacturing Using Artificial Neural Networks for Industry 4.0
,”
Int. J. Prod. Res.
,
58
(
9
), pp.
2841
2861
.
14.
Zhang
,
H.
,
Liu
,
B.
, and
Wu
,
H.
,
2021
, “
Smart Grid Cyber-Physical Attack and Defense: A Review
,”
IEEE Access
,
9
, pp.
29641
29659
.
15.
Sturm
,
L. D.
,
Williams
,
C. B.
,
Camelio
,
J. A.
,
White
,
J.
, and
Parker
,
R.
,
2017
, “
Cyber-Physical Vulnerabilities in Additive Manufacturing Systems: A Case Study Attack on the .STL File With Human Subjects
,”
J. Manuf. Syst.
,
44
, pp.
154
164
.
16.
Barrère
,
M.
,
Hankin
,
C.
,
Nicolaou
,
N.
,
Eliades
,
D. G.
, and
Parisini
,
T.
,
2020
, “
Measuring Cyber-Physical Security in Industrial Control Systems via Minimum-Effort Attack Strategies
,”
J. Inf. Secur. Appl.
,
52
, p.
102471
.
17.
Chen
,
X.
,
Këpuska
,
E.
,
Mauw
,
S.
, and
Ramírez-Cruz
,
Y.
,
2020
, “
Active Re-Identification Attacks on Periodically Released Dynamic Social Graphs
,”
Computer Security – ESORICS 2020
,
Guildford, UK
.
18.
Henriksen-Bulmer
,
J.
, and
Jeary
,
S.
,
2016
, “
RE-Identification Attacks—A Systematic Literature Review
,”
Int. J. Inf. Manage.
,
36
(
6
), pp.
1184
1192
.
19.
Livraga
,
G.
, and
Park
,
N.
,
2021
, “
Analysis and Implications for Equifax Data Breach
,”
MIS Quarterly Executive
,
20
(
2
).
20.
Khan
,
S.
,
Kabanov
,
I.
,
Hua
,
Y.
, and
Madnick
,
S.
,
2022
, “
A Systematic Analysis of the Capital One Data Breach: Critical Lessons Learned
,”
ACM Trans. Priv. Secur.
,
26
(
1
), pp.
1
29
.
21.
Song
,
J.
,
2021
, “
Mitigating Insider Threat Risks in Cyber-physical Manufacturing Systems
,” Ph.D. dissertation, Syracuse University, Syracuse, NY, https://surface.syr.edu/etd/1367, Accessed: November 27, 2024.
22.
Lu
,
J.
,
Xiao
,
R.
, and
Jin
,
S.
,
2021
, “
A Survey for Cloud Data Security
,”
Dianzi Yu Xinxi Xuebao/J. Electron. Inf. Technol.
,
43
(
4
), pp.
881
891
.
23.
Gill
,
S. H.
,
Razzaq
,
M. A.
,
Ahmad
,
M.
,
Almansour
,
F. M.
,
Haq
,
I. U.
,
Jhanjhi
,
N. Z.
,
Alam
,
M. Z.
, and
Masud
,
M.
,
2022
, “
Security and Privacy Aspects of Cloud Computing: A Smart Campus Case Study
,”
Intell. Autom. Soft Comput.
,
31
(
1
), pp.
117
128
.
24.
Awadh
,
W. A.
,
Alasady
,
A. S.
, and
Hashim
,
M. S.
,
2023
, “
A Multilayer Model to Enhance Data Security in Cloud Computing
,”
Indones. J. Electr. Eng. Comput. Sci.
,
32
(
2
), p.
1105
.
25.
Wijaya
,
G.
, and
Surantha
,
N.
,
2020
, “
Multi-Layered Security Design and Evaluation for Cloud-Based Web Application: Case Study of Human Resource Management System
,”
Adv. Sci. Technol. Eng. Syst. J.
,
5
(
5
), pp.
674
679
.
26.
Bappy
,
M. M.
,
Liu
,
C.
,
Bian
,
L.
, and
Tian
,
W.
,
2022
, “
Morphological Dynamics-Based Anomaly Detection Towards In Situ Layer-Wise Certification for Directed Energy Deposition Processes
,”
ASME J. Manuf. Sci. Eng.
,
144
(
11
), p.
111007
.
27.
Khanzadeh
,
M.
,
Tian
,
W.
,
Yadollahi
,
A.
,
Doude
,
H. R.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Dual Process Monitoring of Metal-Based Additive Manufacturing Using Tensor Decomposition of Thermal Image Streams
,”
Addit. Manuf.
,
23
, pp.
443
456
.
28.
Mahesh
,
R.
, and
Meyyappan
,
T.
,
2013
, “
Anonymization Technique Through Record Elimination to Preserve Privacy of Published Data
,”
2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering
,
Salem, India
.
29.
Petrik
,
J.
,
Kavas
,
B.
, and
Bambach
,
M.
,
2023
, “
MeltPoolGAN: Auxiliary Classifier Generative Adversarial Network for Melt Pool Classification and Generation of Laser Power, Scan Speed and Scan Direction in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
78
, p.
103868
.
30.
Liu
,
W.
,
Wang
,
Z.
,
Tian
,
L.
,
Lauria
,
S.
, and
Liu
,
X.
,
2021
, “
Melt Pool Segmentation for Additive Manufacturing: A Generative Adversarial Network Approach
,”
Comput. Electr. Eng.
,
92
, p.
107183
.
31.
Potdar
,
V. M.
,
Song
,
H.
, and
Elizabeth
,
C.
,
2005
, “
A Survey of Digital Image Watermarking Techniques
,”
2005 3rd IEEE International Conference on Industrial Informatics (INDIN)
,
Perth, WA, Australia
,
Aug. 10–12.
32.
Kahng
,
A. B.
,
Lach
,
J.
,
Mangione-Smith
,
W. H.
,
Mantik
,
S.
,
Markov
,
I. L.
,
Potkonjak
,
M.
,
Tucker
,
P.
,
Wang
,
H.
, and
Wolfe
,
G.
,
1998
, “
Watermarking Techniques for Intellectual Property Protection
,”
35th Annual Design Automation Conference (DAC '98)
,
San Francisco, CA
,
June 15–19
.
33.
Mohanarathinam
,
A.
,
Kamalraj
,
S.
,
Prasanna Venkatesan
,
G. K. D.
,
Ravi
,
R. V.
, and
Manikandababu
,
C. S.
,
2020
, “
Digital Watermarking Techniques for Image Security: A Review
,”
J. Ambient Intell. Humaniz. Comput.
,
11
(
8
), pp.
3221
3229
.
34.
Dixit
,
A.
, and
Dixit
,
R.
,
2017
, “
A Review on Digital Image Watermarking Techniques
,”
Int. J. Image Graph. Signal Process.
,
9
(
4
), pp.
56
66
.
35.
Younis
,
Y. A.
,
Kifayat
,
K.
, and
Merabti
,
M.
,
2014
, “
An Access Control Model for Cloud Computing
,”
J. Inf. Secur. Appl.
,
19
(
1
), pp.
45
60
.
36.
Suryateja
,
P. S.
,
2018
, “
Threats and Vulnerabilities of Cloud Computing: A Review
,”
Int. J. Comput. Sci. Eng.
,
6
(
3
), pp.
297
302
.
37.
Gund
,
N. S.
, and
Jadhav
,
A. A.
,
2023
, “
Cloud Computing Security: Threats and Countermeasures
,”
Int. J. Adv. Res. Sci. Commun. Technol.
,
3
(
5
),
517
523
.
38.
Ogburn
,
M.
,
Turner
,
C.
, and
Dahal
,
P.
,
2013
, “
Homomorphic Encryption
,”
Proc. Complex Adaptive Systems
,
20
, pp.
502
509
.
39.
Agrawal
,
M.
, and
Mishra
,
P.
,
2012
, “
A Comparative Survey on Symmetric Key Encryption Techniques
,”
Intern. J. Comput. Sci. Eng.
,
4
(
5
), p.
877
.
40.
Shinde
,
M. R.
, and
Taur
,
R. D.
,
2015
, “
Encryption Algorithm for Data Security and Privacy in Cloud Storage
,”
Am. J. Comput. Sci. Eng. Surv.
,
3
(
1
), pp.
34
39
.
41.
Fontaine
,
C.
, and
Galand
,
F.
,
2007
, “
A Survey of Homomorphic Encryption for Nonspecialists
,”
Eurasip J. Inf. Secur.
,
2007
, pp.
1
10
.
42.
Marcolla
,
C.
,
Sucasas
,
V.
,
Manzano
,
M.
,
Bassoli
,
R.
,
and Fitzek
,
F. H. P.
, and
Aaraj
,
N.
,
2022
, “
Survey on Fully Homomorphic Encryption, Theory, and Applications
,”
Proc. IEEE
,
110
(
10
), pp.
1572
1609
.
43.
Arogundade
,
O. R.
,
2023
, “
Addressing Cloud Computing Security and Visibility Issues
,”
Int. Adv. Res. J. Sci. Eng. Technol.
,
10
(
3
).
44.
Singh
,
A.
, and
Chatterjee
,
K.
,
2017
, “
Cloud Security Issues and Challenges: A Survey
,”
J. Netw. Comput. Appl.
,
79
, pp.
88
115
.
45.
Gatlin
,
J.
,
Belikovetsky
,
S.
,
Elovici
,
Y.
,
Skjellum
,
A.
,
Lubell
,
J.
,
Witherell
,
P.
, and
Yampolskiy
,
M.
,
2021
, “
Encryption is Futile: Reconstructing 3D-Printed Models Using the Power Side-Channel
,”
24th International Symposium on Research in Attacks, Intrusions and Defenses (RAID '21)
,
San Sebastian, Spain
.
46.
Kumar
,
L.
, and
Badal
,
N.
,
2019
, “
Minimizing the Effect of Brute Force Attack Using Hybridization of Encryption Algorithms
,”
Int. J. Comput. Appl.
,
178
(
33
), pp.
26
31
.
47.
Munoz
,
P. S.
,
Tran
,
N.
,
Craig
,
B.
,
Dezfouli
,
B.
, and
Liu
,
Y.
,
2018
, “
Analyzing the Resource Utilization of AES Encryption on IoT Devices
.”
48.
Youm
,
H. Y.
,
2020
, “
An Overview of De-Identification Techniques and Their Standardization Directions
,”
IEICE Trans. Inf. Syst.
,
E103.D
(
7
), pp.
1448
1461
.
49.
Newton
,
E. M.
,
Sweeney
,
L.
, and
Malin
,
B.
,
2005
, “
Preserving Privacy by De-Identifying Face Images
,”
IEEE Trans. Knowl. Data Eng.
,
17
(
2
), pp.
232
243
.
50.
Olatunji
,
I. E.
,
Rauch
,
J.
,
Katzensteiner
,
M.
, and
Khosla
,
M.
,
2022
, “
A Review of Anonymization for Healthcare Data
,”
Big Data
.
51.
Murthy
,
S.
,
Abu Bakar
,
A.
,
Abdul Rahim
,
F.
, and
Ramli
,
R.
,
2019
, “
A Comparative Study of Data Anonymization Techniques
,”
2019 IEEE 5th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS)
,
Washington, DC
.
52.
Hukkelås
,
H.
, and
Lindseth
,
F.
,
2023
, “
Does Image Anonymization Impact Computer Vision Training?
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
,
Vancouver, BC, Canada
.
53.
Lee
,
J. H.
, and
You
,
S. J.
,
2024
, “
Balancing Privacy and Accuracy: Exploring the Impact of Data Anonymization on Deep Learning Models in Computer Vision
,”
IEEE Access
,
12
, pp.
8346
8358
.
54.
Bandara
,
P. L. M. K.
,
Bandara
,
H. D.
, and
Fernando
,
S.
,
2020
, “
Evaluation of Re-Identification Risks in Data Anonymization Techniques Based on Population Uniqueness
,”
2020 5th International Conference on Information Technology Research (ICITR)
,
Moratuwa, Sri Lanka
,
Dec. 2–4
.
55.
Kikuchi
,
H.
,
Yamaguchi
,
T.
,
Hamada
,
K.
,
Yamaoka
,
Y.
,
Oguri
,
H.
, and
Sakuma
,
J.
,
2016
, “
Ice and Fire: Quantifying the Risk of Re-Identification and Utility in Data Anonymization
,”
2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)
,
Crans-Montana, Switzerland
,
Mar. 23–25
.
56.
Rafi
,
T. H.
,
Noor
,
F. A.
,
Hussain
,
T.
, and
Chae
,
D. K.
,
2024
, “
Fairness and Privacy Preserving in Federated Learning: A Survey
,”
Inf. Fusion
,
105
, p.
102198
.
57.
Yin
,
X.
,
Zhu
,
Y.
, and
Hu
,
J.
,
2021
, “
A Comprehensive Survey of Privacy-Preserving Federated Learning: A Taxonomy, Review, and Future Directions
,”
ACM Comput. Surv.
,
54
(
6
), pp.
1
36
.
58.
Chen
,
M.
,
Shlezinger
,
N.
,
Vincent Poor
,
H.
,
Eldar
,
Y. C.
, and
Cui
,
S.
,
2021
, “
Communication-Efficient Federated Learning
,”
Proc. Natl. Acad. Sci.
,
118
(
17
), p.
e2024789118
.
59.
Li
,
T.
,
Sahu
,
A. K.
,
Talwalkar
,
A.
, and
Smith
,
V.
,
2020
, “
Federated Learning: Challenges, Methods, and Future Directions
,”
IEEE Signal Process. Mag.
,
37
(
3
), pp.
50
60
.
60.
Fullington
,
D.
,
Yangue
,
E.
,
Bappy
,
M. M.
,
Liu
,
C.
, and
Tian
,
W.
,
2024
, “
Leveraging Small-Scale Datasets for Additive Manufacturing Process Modeling and Part Certification: Current Practice and Remaining Gaps
,”
J. Manuf. Syst.
,
75
, p.
306
321
.
61.
Liu
,
W. K.
,
Zhang
,
Y.
,
Yang
,
H.
, and
Meng
,
Q.
,
2024
, “
A Survey on Differential Privacy for Medical Data Analysis
,”
Ann. Data Sci.
,
11
(
2
), pp.
733
747
.
62.
Hu
,
Q.
,
Chen
,
R.
,
Yang
,
H.
, and
Kumara
,
S.
,
2020
, “
Privacy-Preserving Data Mining for Smart Manufacturing
,”
Smart Sustain. Manuf. Syst.
,
4
(
2
), pp.
99
120
.
63.
Hassan
,
M. U.
,
Rehmani
,
M. H.
, and
Chen
,
J.
,
2020
, “
Differential Privacy Techniques for Cyber Physical Systems: A Survey
,”
IEEE Commun. Surv. Tutor.
,
22
(
1
), pp.
746
789
.
64.
Xu
,
R.
,
Baracaldo
,
N.
, and
Joshi
,
J.
,
2021
, “
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
,” http://arxiv.org/abs/2108.04417
65.
Widmer
,
M.
, and
Rajan
,
V.
,
2016
, “
3D Opportunity for Intellectual Property: Additive Manufacturing Stakes its Claim
,” A Deloitte Series on Additive Manufacturing, www2.deloitte.com/content/dam/insights/us/articles/3d-printing-intellectual-property-risks/ER_2981-3D-opportunity-intellectual-property_MASTER.pdf.
66.
Chhetri
,
S. R.
,
Canedo
,
A.
, and
Al Faruque
,
M. A.
,
2018
, “
Confidentiality Breach Through Acoustic Side-Channel in Cyber-Physical Additive Manufacturing Systems
,”
ACM Trans. Cyber-Physical Syst.
,
2
(
1
), pp.
1
25
.
67.
Domingo-Ferrer
,
J.
, and
Torra
,
V.
,
2008
, “
A Critique of k-Anonymity and Some of Its Enhancements
,”
2008 Third International Conference on Availability, Reliability and Security
,
Barcelona, Spain
,
Mar. 4–7
, pp.
990
993
.
68.
LeFevre
,
K.
,
DeWitt
,
D. J.
, and
Ramakrishnan
,
R.
,
2006
, “
Mondrian Multidimensional K-Anonymity
,”
22nd International Conference on Data Engineering (ICDE'06)
,
Atlanta, GA
,
Apr. 3–7
, Vol. 2006, p.
25
.
69.
Samarati
,
P.
, and
Sweeney
,
L.
,
1998
, “
Generalizing Data to Provide Anonymity When Disclosing Information
,”
Symposium on Principles of Database Systems
,
98
(
188
), pp.
10
1145
.
70.
Xiong
,
P.
, and
Zhu
,
T.
,
2012
, “
An Anonymization Method Based on Tradeoff Between Utility and Privacy for Data Publishing
,”
2012 International Conference on Management of e-Commerce and e-Government
,
Beijing, China
.
71.
Gross
,
R.
,
Airoldi
,
E.
,
Malin
,
B.
, and
Sweeney
,
L.
,
2006
, “
Integrating Utility Into Face De-Identification
,”
Privacy Enhancing Technologies: 5th International Workshop, PET 2005
,
Cavtat, Croatia
,
May 30–June 1
.
72.
Yiting Cao
,
Y. F.
,
Zhang
,
Y.
, and
Wu
,
J.
,
2024
, “
Multi-Channel Attribute Preservation for Face De-Identification
,”
Multimed. Tools Appl.
73.
Sweeney
,
L.
,
2002
, “
K-Anonymity: A Model for Protecting Privacy
,”
Int. J. Uncertainty Fuzziness Knowledge Based Syst.
,
10
(
5
), pp.
1
14
.
74.
Rao
,
K. N.
,
Jayasree
,
P.
,
Krishna
,
C. V. M.
,
Prasanth
,
S.
, and
Reddy
,
C. S.
,
2021
, “
Image Anonymization Using Deep Convolutional Generative Adversarial Network
,”
J. Phys. Conf. Ser.
,
2089
(
1
), p.
012012
.
75.
Du
,
L.
,
Yi
,
M.
,
Blasch
,
E.
, and
Ling
,
H.
,
2014
, “
GARP-Face: Balancing Privacy Protection and Utility Preservation in Face De-Identification
,”
2014 IEEE International Joint Conference on Biometrics
.
76.
Jourabloo
,
A.
,
Yin
,
X.
, and
Liu
,
X.
,
2015
, “
Attribute Preserved Face De-Identification
,”
2015 International Conference on Biometrics (ICB)
,
Phuket, Thailand
,
May 20–22
, pp.
278
285
.
77.
Li
,
T.
, and
Lin
,
L.
,
2019
, “
AnonymousNet: Natural Face De-Identification With Measurable Privacy
,”
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
,
Long Beach, CA
,
June 15–20
, pp.
56
65
.
78.
Meden
,
B.
,
Emersic
,
Z.
,
Struc
,
V.
, and
Peer
,
P.
,
2017
, “
Κ-Same-Net: Neural-Network-Based Face Deidentification
,”
2017 International Conference and Workshop on Bioinspired Intelligence (IWOBI)
,
Funchal, Portugal
,
July 10–12
.
79.
Taichi Nakamura
,
H. N.
, and
Sakuma
,
Y.
,
2021
, “
Face-Image Anonymization as an Application of Multidimensional Data k-Anonymizer
,”
Int. J. Netw. Comput.
,
11
(
1
), pp.
102
119
.
80.
Dwork
,
C.
, and
Roth
,
A.
,
2013
, “
The Algorithmic Foundations of Differential Privacy
,”
Found. Trends Theor. Comput. Sci.
,
9
(
3–4
), pp.
211
407
.
81.
Ohm
,
P.
,
2010
, Broken Promises of Privacy: Responding to the Surprising Failure of Anonymization (August 13, 2009). UCLA Law Review, Vol.
57
, p.
1701
, 2010, University of Colorado Law Legal Studies Research Paper No. 9-12, https://ssrn.com/abstract=1450006.
82.
Ren
,
X.
, and
Jiang
,
D.
,
2022
, “
A Personalized α,β,l,k-Anonymity Model of Social Network for Protecting Privacy
,”
Wirel. Commun. Mob. Comput.
,
2022
, pp.
1
11
.
83.
Mrabet
,
H.
,
Belguith
,
S.
,
Alhomoud
,
A.
, and
Jemai
,
A.
,
2020
, “
A Survey of IoT Security Based on a Layered Architecture of Sensing and Data Analysis
,”
Sensors (Switzerland)
,
20
(
13
), p.
3625
.
84.
Sood
,
S. K.
,
2012
, “
A Combined Approach to Ensure Data Security in Cloud Computing
,”
J. Netw. Comput. Appl.
,
35
(
6
), pp.
1831
1838
.
85.
Pang
,
Y.
,
Lin
,
J.
,
Qin
,
T.
, and
Chen
,
Z.
,
2022
, “
Image-to-Image Translation: Methods and Applications
,”
IEEE Trans. Multimedia
,
24
, pp.
3859
3881
.
86.
Esfahani
,
M. N.
,
Bappy
,
M. M.
,
Bian
,
L.
, and
Tian
,
W.
,
2022
, “
IN-Situ Layer-Wise Certification for Direct Laser Deposition Processes Based on Thermal Image Series Analysis
,”
J. Manuf. Processes
,
75
(
July
), pp.
895
902
.
87.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
(
Apr.
), pp.
69
82
.
88.
Pinkerton
,
A. J.
, and
Li
,
L.
,
2004
, “
Modelling the Geometry of a Moving Laser Melt Pool and Deposition Track via Energy and Mass Balances
,”
J. Phys. D. Appl. Phys.
,
37
(
14
), pp.
1885
1895
.
89.
Castejón
,
M.
,
Alegre
,
E.
,
Barreiro
,
J.
, and
Hernández
,
L. K.
,
2007
, “
ON-Line Tool Wear Monitoring Using Geometric Descriptors From Digital Images
,”
Int. J. Mach. Tools Manuf.
,
47
(
12–13
), pp.
1847
1853
.
90.
Criales
,
L. E.
,
Arısoy
,
Y. M.
,
Lane
,
B.
,
Moylan
,
S.
,
Donmez
,
A.
, and
Özel
,
T.
,
2017
, “
Laser Powder bed Fusion of Nickel Alloy 625: Experimental Investigations of Effects of Process Parameters on Melt Pool Size and Shape With Spatter Analysis
,”
Int. J. Mach. Tools Manuf.
,
121
(
Sept.
), pp.
22
36
.
91.
Purwono
,
P.
,
Ma’arif
,
A.
,
Rahmaniar
,
W.
,
Fathurrahman
,
H. I. K.
,
Frisky
,
A. Z. K.
, and
Haq
,
Q. M. U.
,
2022
, “
Understanding of Convolutional Neural Network (CNN): A Review
,”
Int. J. Rob. Control Syst.
,
2
(
4
), pp.
739
748
.
92.
Xing
,
W.
,
Chu
,
X.
,
Lyu
,
T.
,
Lee
,
C. G.
,
Zou
,
Y.
, and
Rong
,
Y.
,
2022
, “
Using Convolutional Neural Networks to Classify Melt Pools in a Pulsed Selective Laser Melting Process
,”
J. Manuf. Processes
,
74
, pp.
486
499.
93.
Xia
,
C.
,
Pan
,
Z.
,
Li
,
Y.
,
Chen
,
J.
, and
Li
,
H.
,
2022
, “
Vision-Based Melt Pool Monitoring for Wire-Arc Additive Manufacturing Using Deep Learning Method
,”
Int. J. Adv. Manuf. Technol.
,
120
(
1–2
), pp.
551
562
.
94.
Zhang
,
B.
,
Liu
,
S.
, and
Shin
,
Y. C.
,
2019
, “
In-Process Monitoring of Porosity During Laser Additive Manufacturing Process
,”
Addit. Manuf.
,
28
, pp.
497
505
.
95.
Al-Saffar
,
A. A. M.
,
Tao
,
H.
, and
Talab
,
M. A.
,
2017
, “
Review of Deep Convolution Neural Network in Image Classification
,”
2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)
,
Jakarta, Indonesia
,
Oct. 23–24
.
96.
Kadam
,
S. S.
,
Adamuthe
,
A. C.
, and
Patil
,
A. B.
,
2020
, “
CNN Model for Image Classification on MNIST and Fashion-MNIST Dataset
,”
J. Sci. Res.
,
64
(
02
), pp.
374
384
.
97.
Abadi
,
M.
,
Chu
,
A.
,
Goodfellow
,
I.
,
McMahan
,
H. B.
,
Mironov
,
I.
,
Talwar
,
K.
, and
Zhang
,
L.
,
2016
, “
Deep Learning With Differential Privacy
,”
2016 ACM SIGSAC Conference on Computer and Communications Security
,
Vienna, Austria
,
Oct. 24–28
.
98.
Mendes
,
R.
, and
Vilela
,
J. P.
,
2017
, “
Privacy-Preserving Data Mining: Methods, Metrics, and Applications
,”
IEEE Access
,
5
, pp.
10562
10582
.
99.
Wang
,
H.
,
Jiang
,
Z. L.
,
Zhao
,
Y.
,
Yiu
,
S. M.
,
Yang
,
P.
,
Tan
,
Z.
,
Jin
,
B.
,
Xu
,
S.
, and
Pan
,
S.
,
2024
, “
SFPDML: Securer and Faster Privacy-Preserving Distributed Machine Learning based on MKTFHE
,”
arXiv preprint, arXiv:2211.09353
. https://arxiv.org/abs/2211.09353
100.
Liu
,
H.
,
Peng
,
C.
,
Tian
,
Y.
,
Long
,
S.
, and
Wu
,
Z.
,
2021
, “
Balancing Privacy-Utility of Differential Privacy Mechanism: A Collaborative Perspective
,”
Secur. Commun. Netw.
,
2021
, pp.
1
14
.
101.
ASTM E8
,
2010
, “
ASTM E8/E8M Standard Test Methods for Tension Testing of Metallic Materials 1
,”
Annu. B. ASTM Stand.
,
4
(
C
), pp.
1
27
.
102.
Bro
,
R.
, and
Smilde
,
A. K.
,
2014
, “
Principal Component Analysis
,”
Anal. Methods
,
6
(
9
), pp.
2812
2831
.
103.
LeCun
,
G.
,
Bengio
,
Y.
, and
Hinton
,
Y.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
104.
Ioffe
,
S.
, and
Szegedy
,
C.
,
2015
, “
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
,”
arXiv preprint
. https://arxiv.org/abs/1502.03167
105.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
ImageNet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
106.
Al Mamun
,
A.
,
Bappy
,
M. M.
,
Mudiyanselage
,
A. S.
,
Li
,
J.
,
Jiang
,
Z.
,
Tian
,
Z.
,
Fuller
,
S.
,
Falls
,
T. C.
,
Bian
,
L.
, and
Tian
,
W.
,
2023
, “
Multi-Channel Sensor Fusion for Real-Time Bearing Fault Diagnosis by Frequency-Domain Multilinear Principal Component Analysis
,”
Int. J. Adv. Manuf. Technol.
,
124
(
3–4
), pp.
1321
1334
.
107.
Wu
,
J.
,
Chen
,
X. Y.
,
Zhang
,
H.
,
Xiong
,
L. D.
,
Lei
,
H.
, and
Deng
,
S. H.
,
2019
, “
Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimization
,”
J. Electron. Sci. Technol.
,
17
, pp.
26
40
.
108.
Wang
,
Y.
,
Blache
,
R.
, and
Xu
,
X.
,
2017
, “
Design for Additive Manufacturing in the Cloud Platform
,”
ASME 2017 12th Int. Manufacturing Science and Engineering Conf. collocated with the JSME/ASME 2017 6th Int. Conf. on Materials and Processing
,
Los Angeles, CA
,
June 4–8
.
109.
Ribaric
,
S.
,
Ariyaeeinia
,
A.
, and
Pavesic
,
N.
,
2016
, “
De-Identification for Privacy Protection in Multimedia Content: A Survey
,”
Signal Process. Image Commun.
,
47
, pp.
131
151
.
110.
Jain
,
P.
,
Muskara
,
P.
, and
Jain
,
P.
,
2021
, “
Enhance Data Security in Cloud Computing With Digital Signature & Hybrid Cryptographic Algorithm
,”
2021 International Conference on Simulation, Automation & Smart Manufacturing (SASM)
,
Mathura, India
,
Aug. 20–21
.
You do not currently have access to this content.