In the framework of Virtual CMM [1], virtual parts are proposed to be constructed as triangulated surface models. This paper presents a novel surface reconstruction method to the creation of virtual parts. It is based on the idea of identification and sculpting of concave regions of a Delaunay triangulation of the sample data. The proposed algorithm is capable of handling the reconstruction of surfaces with or without boundaries from unorganized points. Comparisons with other Delaunay-based algorithms show that it is more efficient in that it can optimally adapt to the geometric complexity of the sampled object. To validate the proposed algorithm, some detailed illustrations are given.

1.
Yau, H. T., and Kuo, C. C., 2002, “Virtual CMM and Virtual Part for Intelligent Dimensional Inspection,” 2002 Japan-USA Symposium on Flexible Automation, pp. 1289–1296.
2.
Hoppe, H., DeRose, T., Duchamp, McDonald, T., J., and Stuetzle, W., 1992, “Surface Reconstruction from Unorganized Points,” Proc. SIGGRAPH ’92, pp. 71–78.
3.
Amenta, N., Bern, M., and Kamvysselis, M., 1998, “A New Voronoi-based Surface Reconstruction Algorithm,” Proc. SIGGRAPH ’98, pp. 415–421.
4.
Amenta
,
N.
, and
Bern
,
M.
,
1999
, “
Surface Reconstruction by Voronoi Filtering
,”
Discrete Comput. Geom.
,
22
, pp.
481
504
.
5.
Amenta, N., Choi, S., and Kolluri, R. V., 2001, “The Power Crust,” Proc. 6th ACM Sympos. on Solid modeling and applications, pp. 249–266.
6.
Amenta
,
N.
,
Choi
,
S.
, and
Kolluri
,
R. K.
, 2001, “The Power Crust, Unions of Balls, and the Medial Axis Transform,” Computational Geometry: Theory and Applications, 19(2–3), pp. 127–153.
7.
Dey
,
T. K.
,
Giesen
,
J.
,
Leekha
,
N.
, and
Wenger
,
R.
, 2001, “Detecting Boundaries for Surface Reconstruction Using Co-cones,” Intl. J. Comput. Graphics & CAD/CAM, 16, pp. 141–159.
8.
Dey, T. K., and Giesen, J., 2001, “Detecting Undersampling in Surface Reconstruction,” Proc. 17th ACM Sympos. on Comput. Geom, pp. 257–63.
9.
Dey, T. K., Giesen, J., Goswami, S., Hudson, J., Wenger, R., and Zhao, W., 2001, “Undersampling and Oversampling in Sample Based Shape Modeling,” Proc. IEEE Visualization 2001, pp. 83–90.
10.
Boissonnat
,
J. D.
,
1984
, “
Geometric Structures for Three-dimensional Shape Representation
,”
ACM Trans. Graph.
,
3
(
4
), pp.
266
286
.
11.
Edelsbrunner
,
H.
,
Kirkpatrick
,
D. G.
, and
Seidel
,
R.
,
1983
, “
On the Shape of a Set of Points in the Plane
,”
IEEE Trans. Inf. Theory
,
IT-29
, pp.
551
559
.
12.
Edelsbrunner, H., 1992, “Weighted Alpha Shapes,” Technical Report UIUCDCS-R-92-1760, Department of Computer Science, University of Illinois, Urbana-Champagne, IL.
13.
Edelsbrunner
,
H.
, and
Mucke
,
E. P.
,
1994
, “
Three-dimensional Alpha Shapes
,”
ACM Trans. Graphics
,
13
(
1
), pp.
43
72
.
14.
Bernardini
,
F.
,
Mittleman
,
J.
,
Rushmeier
,
H.
,
Silva
,
C.
, and
Taubin
,
G.
,
1999
, “
The Ball-Pivoting Algorithm for Surface Reconstruction
,”
IEEE Trans. Vis. Comput. Graph.
,
5
(
4
), pp.
349
359
.
15.
Petitjean
,
S.
, and
Boyer
,
E.
, 2001, “Regular and Non-regular Point Sets: Properties and Reconstruction,” Comput. Geom. Theory Appl., 19, pp. 101–126.
16.
Huang
,
J.
, and
Menq
,
C. H.
,
2002
, “
Combinatorial Manifold Mesh Reconstruction and Optimization from Unorganized Points with Arbitrary Topology
,”
Comput.-Aided Des.
,
34
(
2
), pp.
149
165
.
17.
Bajaj, C., Bernardini, F., and Xu, G., 1995, “Automatic Reconstruction of Surfaces and Scalar Fields from 3D Scans,” Proc. SIGGRAPH ’95, pp. 109–118.
18.
Bajaj, C., Bernardini, F., Chen, J., and Schikore, D., 1997, “Triangulation-based 3D Reconstruction Methods,” Proc. 13th ACM Sympos. on Comput. Geom., pp. 484–484.
19.
Bajaj
,
C.
,
Bernardini
,
F.
, and
Xu
,
G.
,
1997
, “
Reconstruction of Surfaces and Surfaces-on-Surfaces from Unorganized Three-Dimensional Data
,”
Algorithmica
,
19
, pp.
243
261
.
20.
Bernardini
,
F.
,
Bajaj
,
C.
,
Chen
,
J.
, and
Schikore
,
D.
, 1999, “Automatic Reconstruction of 3D CAD Models from Digital Scans,” Int. J. on Comp. Geom. and Appl., 9(4–5), pp. 327–370.
21.
Curless, B., and Levoy, M., 1996, “A Volumetric Method for Building Complex Models from Range Images,” Proc. SIGGRAPH ’96, pp. 303–312.
22.
Boissonnat, J-D., and Cazals, F., 2000, “Smooth Surface Reconstruction via Natural Neighbor Interpolation of Distance Functions,” Proc. 16th. ACM Sympos. on Comput. Geom, pp. 223–232.
23.
Bentley
,
L.
,
1975
, “
Multidimensional Binary Search Trees Used for Associative Searching
,”
Commun. ACM
,
18
(
9
), pp.
509
517
.
24.
Edelsbrunner
,
H.
, and
Guoy
,
D.
, 2002, “Sink-insertion for Mesh Improvement,” Int. J. Found. Comput. Sci., 13, pp. 223–242.
25.
Yau
,
H. T.
,
Kuo
,
C. C.
, and
Yeh
,
C. H.
,
2002
, “
Extension of Surface Reconstruction Algorithm to the Global Stitching and Repairing of STL Models
,”
Comput.-Aided Des.
,
35
(
5
), pp.
477
486
.
26.
Jun
,
C. S.
,
Kim
,
D. S.
, and
Park
,
S.
,
2002
, “
A New Curve-based Approach to Polyhedral Machining
,”
Comput.-Aided Des.
,
34
(
5
), pp.
379
389
.
27.
Aurenhammer
,
F.
,
1991
, “
Voronoi Diagrams—A Survey of a Fundamental Geometric Data Structure
,”
ACM Comput. Surv.
,
23
(
3
), pp.
345
405
.
28.
http://www.cgal.org/
29.
Boissonnat, J. D., Devillers, O., Teillaud, M., and Yvinec, M., 2000, “Triangulations in CGAL,” Proc. 14th ACM Sympos. On Comput. Geom., pp. 11–18.
30.
Bro¨nnimann, H., Burnikel, C., and Pion S., 1998, “Interval Arithmetic Yields Efficient Dynamic Filters for Computational Geometry,” Proc. 14th. ACM Sympos. on Comput. Geom., pp. 165–174.
31.
Devillers, O., 1998, “Improved Incremental Randomized Delaunay Triangulation,” Proc. 14th ACM Sympos. Comput. on Geom., pp. 106–115.
32.
http://www.cs.utexas.edu/users/amenta/powercrust/welcome.html
33.
http://www.cis.ohio-state.edu/∼tamaldey/cocone.html
You do not currently have access to this content.