In this paper, we apply a homotopy algorithm to the problem of finding points in a moving body that lie on specific algebraic surfaces for a given set of spatial configurations of the body. This problem is a generalization of Burmester’s determination of points in a body that lie on a circle for five planar positions. We focus on seven surfaces that we term “reachable” because they correspond to serial chains with two degree-of-freedom positioning structures combined with a three degree-of-freedom spherical wrist. A homotopy algorithm based on generalized linear products is used to provide a convenient estimate of the number of solutions of these polynomial systems. A parallelized version of this algorithm was then used to numerically determine all of the solutions.

1.
Burmester, L., 1886, Lehrbuch der Kinematik, Verlag Von Arthur Felix, Leipzig, Germany.
2.
Suh, C. H., and Radcliffe, C. W., 1978, Kinematics and Mechanism Design, John Wiley and Sons, New York.
3.
Sandor, G. N., and Erdman, A. G., 1984, Advanced Mechanism Design: Analysis and Synthesis, Vol. 2, Prentice-Hall, Englewood Cliffs, NJ.
4.
McCarthy, J. M., 2000, Geometric Design of Linkages, Springer-Verlag, New York.
5.
Chen
,
P.
, and
Roth
,
B.
,
1967
, “
Design Equations for Finitely and Infinitesimally Separated Position Synthesis of Binary Link and Combined Link Chains
,”
ASME J. Eng. Ind.
,
91
, pp.
209
219
.
6.
Bottema, O., and Roth, B., 1979, Theoretical Kinematics, North Holland Press, NY.
7.
McCarthy, J. M., 1990, An Introduction to Theoretical Kinematics, MIT Press, Cambridge, MA.
8.
Liao
,
Q.
, and
McCarthy
,
J. M.
,
2001
, “
On the Seven Position Synthesis of a 5-SS Platform Linkage
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
74
79
.
9.
Morgan
,
A. P.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
1995
, “
A Product-Decomposition Bound for Bezout Numbers
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
32
(
4
), pp.
1308
1325
.
10.
Verschelde
,
J.
,
1999
, “
Algorithm 795: PHCpack: A Generalpurpose Solver for Polynomial Systems by Homotopy Continuation
,”
ACM Trans. Math. Softw.
,
25
(
2
), pp.
251
276
.
11.
Wise
,
S. M.
,
Sommese
,
A. J.
, and
Watson
,
L. T.
,
2000
, “
Algorithm 801: POL_SYS PLP: A Partitioned Linear Product Homotopy Code for Solving Polynomial Systems of Equations
,”
ACM Trans. Math. Softw.
,
26
(
1
), pp.
176
200
.
12.
Tsai
,
L.-W.
, and
Morgan
,
A. P.
,
1985
, “
Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Methods
,”
ASME J. Mech., Transm., Autom. Des.
,
107
, pp.
189
200
.
13.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1990
, “
Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics
,”
ASME J. Mech. Des.
,
112
(
1
), pp.
59
68
.
14.
Sommese, A. J., Verschelde, J., and Wampler, C. W., 2002, “Advances in Polynomial Continuation for Solving Problems in Kinematics,” Proc. 2002 ASME Design Engineering Technical Conferences, paper no. DETC2002/MECH-34254, Sept. 29-Oct. 2, Montreal, Canada.
15.
Lee
,
E.
, and
Mavroidis
,
D.
,
2002
, “
Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using Polynomial Homotopy Continuation
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
652
661
.
16.
Watson
,
L. T.
,
Sosonkina
,
M.
,
Melville
,
R. C.
,
Morgan
,
A. P.
, and
Walker
,
H. F.
,
1997
, “
Algorithm 777: HOMPACK90: A suite of Fortran 90 codes for globally convergent homotopy algorithms
,”
ACM Trans. Math. Softw.
,
23
(
4
), pp.
514
549
.
17.
Wampler
,
C.
,
1994
, “
An Efficient Start System for Multi-Homogeneous Polynomial Continuation
,”
Numer. Math.
,
66
, pp.
517
523
.
18.
Allison
,
D. C. S.
,
Harimoto
,
S.
, and
Watson
,
L. T.
,
1989
, “
The Granularity of Parallel Homotopy Algorithms for Polynomial Systems of Equations
,”
Int. J. Comput. Math.
,
29
, pp.
21
37
.
19.
Allison
,
D. C. S.
,
Chakraborty
,
A.
, and
Watson
,
L. T.
,
1989
, “
The Granularity of Parallel Homotopy Algorithms for Polynomial Systems of Equations
,”
J. Supercomputing
,
3
, pp.
5
20
.
20.
Chakraborty
,
A.
,
Allison
,
D. C. S.
,
Ribbens
,
C. J.
, and
Watson
,
L. T.
,
1991
, “
Note on Unit Tangent Vector Computation for Homotopy Curve Tracking on a Hypercube
,”
Parallel Comput.
,
17
, pp.
1385
1395
.
21.
Chakraborty
,
A.
,
Allison
,
D. C. S.
,
Ribbens
,
C. J.
, and
Watson
,
L. T.
,
1993
, “
The Parallel Complexity of Embedding Algorithms for the Solution of Systems of Nonlinear Equations
,”
IEEE Trans. Parallel Distrib. Systems
,
4
, pp.
458
465
.
22.
Gropp, W., Lusk, E., and Skjellum, A., Using MPI, Portable Parallel Programming with the Message-Passing Interface, second edition, The MIT Press, Cambridge, MA.
23.
Craig, J. J., 1989, Introduction to Robotics, Mechanics and Control, Addison Wesley, Reading, MA.
24.
Innocenti
,
C.
,
1995
, “
Polynomial Solution of the Spatial Burmester Problem
,”
ASME J. Mech. Des.
,
117
, pp.
64
68
.
25.
Su
,
H.-J.
,
Wampler
,
C.
, and
McCarthy
,
J. M.
,
2004
, “
Geometric Design of Cylindric PRS Serial Chains
,” ASME J. Mech. Des., (in press).
26.
Neilsen, J. and Roth, B., 1995, “Elimination Methods for Spatial Synthesis,” Computational Kinematics, (eds. J. P. Merlet and B. Ravani), 40, pp. 51–62, Kluwer Academic Publishers.
27.
Su, H.-J., and McCarthy, J. M., 2003, “Kinematic Synthesis of a RPS Serial Chains,” Proceedings of the ASME Design Engineering Technical Conference, September 2–6, 2003, Chicago, Il.
28.
Kim, H. S., and Tsai, L. W., 2002, “Kinematic Synthesis of Spatial 3-RPS Parallel Manipulators,” Proc. ASME Des. Eng. Tech. Conf. paper no. DETC2002/MECH-34302, Sept. 29-Oct. 2, 2002, Montreal, Canada.
29.
Gao, T., Li, T. Y., and Wu, M., 2003, “MixedVol: A Software Package for Mixed Volume Computation,” preprint, submitted to ACM Transactions on Math. Sofware, August.
30.
Su, H.-J., 2004, “Computer Aided Synthesis of Constrained Serial and Parallel Robots,” Ph.D. Dissertation, Department of Mechanical and Aerospace Engineering, University of California, Irvine.
You do not currently have access to this content.