The vision of fully automated manufacturing processes was conceived when computers were first used to control industrial equipment. But realizing this goal has not been easy; the difficulties of generating manufacturing information directly from computer aided design (CAD) data continued to challenge researchers for over 25 years. Although the extraction of coordinate geometry has always been straightforward, identifying the semantic structures (i.e., features) needed for reasoning about a component’s function and manufacturability has proved much more difficult. Consequently the programming of computer controlled manufacturing processes such as milling, cutting, turning and even the various lamination systems (e.g., SLA, SLS) has remained largely computer aided rather than entirely automated. This paper summarizes generic difficulties inherent in the development of feature based CAD/CAM (computer aided manufacturing) interfaces and presents two alternative perspectives on developments in manufacturing integration research that have occurred over the last 25 years. The first perspective presents developments in terms of technology drivers including progress in computational algorithms, enhanced design environments and faster computers. The second perspective describes challenges that arise in specific manufacturing applications including multiaxis machining, laminates, and sheet metal parts. The paper concludes by identifying possible directions for future research in this area.

1.
Lee
,
R. K.
,
Montero
,
M. G.
, and
Wright
,
P. K.
, 2003, “
Design Methodology for the Thermal Packaging of Hybrid Electronic-Mechanical Products A Case Study on the Berkeley Emulation Engine (BEE)
,”
Procs. ASME DETC/DA, Chicago, Il, CD-ROM: DETC2003/DAC-48790
.
2.
Ji
,
Q.
, and
Marefat
,
M.
, 1997, “
Machine Interpretation of CAD Data for Manufacturing Applications
,”
ACM Comput. Surv.
0360-0300
29
(
3
), pp.
264
311
.
3.
Allada
,
V.
, and
Anand
,
S.
, 1995, “
Feature-Based Modelling Approaches for Integrated Manufacturing: State-of-the-Art Survey and Future research Directions
,”
Int. J. Comput. Integr. Manuf.
0951-192X,
8
, pp.
411
440
.
4.
Mantyla
,
M.
,
Nau
,
D. S.
, and
Shah
,
J.
, 1996, “
Challenges in Feature-Based Manufacturing Research
,”
Commun. ACM
0001-0782
39
(
2
), pp.
77
85
.
5.
Han
,
J.
,
Pratt
,
M.
, and
Regli
,
W.
, 2000, “
Manufacturing Feature Recognition from Solid Models: A Status Report
,”
IEEE Trans. Rob. Autom.
1042-296X
16
(
6
), pp.
782
796
.
6.
Shah
,
J.
,
Anderson
,
D.
,
Kim
,
Y. S.
, and
Joshi
,
S.
2001, “
A Discourse on Geometric Feature Recognition from CAD Models
,”
J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
1
), pp.
41
51
.
7.
Tseng
,
Y.
, and
Joshi
S.
, 1994, “
Recognizing Multiple Interpretations of Interacting Machining Features
,”
Comput.-Aided Des.
0010-4485,
26
(
9
), pp.
667
688
.
8.
Gupta
,
S.
, and
Nau
,
D.
, 1995, “
Systematic Approach to Analyzing the Manufacturability of Machined Parts
,”
Comput.-Aided Des.
0010-4485,
27
(
5
), pp.
323
342
.
9.
Han
,
J.
, 1997, “
On Multiple Interpretations
,”
Proceedings of the Fourth Symposium on Solid Modelling and Applications
, ACM, pp.
311
321
.
10.
Gaines
,
D. M.
,
Castaño
,
F.
, and
Hayes
,
C. C.
, 1999, “
MEDIATOR: A Resource Adaptive Feature Recognizer that Intertwines Feature Extraction and Manufacturing Analysis
,”
ASME J. Mech. Des.
1050-0472,
121
(
1
), pp.
145
158
.
11.
Hayes
,
C. C.
,
Gaines
,
D. M.
,
Faheem
,
W.
, and
Castaño
,
J. F.
, 1997, “
MAPP: A Matrix Architecture for Process Planning
,”
Procs IEEE International Symposium on Assembly and Task Planning
, Marina del Rey, California, August, pp.
48
53
.
12.
Woo
,
Y.
, and
Sakurai
,
H.
, 2002, “
Recognition of Maximal Features by Volume Decomposition
,”
Comput.-Aided Des.
0010-4485
34
(
3
), pp.
195
207
.
13.
Sundararajan
,
V.
, and
Wright
,
P.
, 2000, “
Identification of Multiple Feature Representations by Volume Decomposition for 2.5D Components
,”
ASME J. Manuf. Sci. Eng.
1087-1357
122
(
1
), pp.
280
290
.
14.
Sundararajan
,
V.
, and
Wright
,
P.
, 2002, “
Feature Based Macroplanning Including Fixturing
,”
J. Comput. Inf. Sci. Eng.
1530-9827
2
(
3
), pp.
179
192
.
15.
Ahn
,
S.
,
Sundararajan
,
V.
,
Smith
,
C.
,
Kannan
,
B.
,
D’Souza
,
R.
,
Sun
,
G.
,
Mohole
,
A.
,
Wright
,
P.
,
Kim
,
J.
,
McMains
,
S.
,
Smith
,
J.
, and
Sequin
,
C.
, 2001, “
CyberCut: An Internet-based CAD/CAM System
,”
J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
1
), pp.
52
59
.
16.
Miao
,
H.
,
Sridharan
,
N.
, and
Shah
,
J.
, 2002, “
CAD-CAM Integration using Machining Features
,”
Int. J. Comput. Integr. Manuf.
0951-192X,
15
(
4
), pp.
296
318
.
17.
Yip-Hoi
,
D.
,
Dutta
,
D.
, and
Huang
,
Z.
, 2003, “
A Customizable Machining Feature Extraction Methodology for Turned Components
,”
J. Manuf. Syst.
0278-6125,
22
(
2
), pp.
82
98
.
18.
Kumar
,
S.
,
Shanker
,
K.
, and
Lal
,
G.
, 1999, “
A Feature Recognition Methodology for Extrudable Product Shapes
,”
Int. J. Prod. Res.
0020-7543,
37
(
11
), pp.
2519
2544
.
19.
Lockett
,
H.
, and
Guenov
,
M.
, 2005, “
Graph-Based Feature Recognition for Injection Molding Based on a Mid-Surface Approach
,”
Comput.-Aided Des.
0010-4485,
37
(
2
), pp.
251
262
.
20.
van den Berg
,
E.
,
Bronsvoort
,
W.
, and
Vergeest
,
J.
, 2002, “
Freeform Feature Modelling: Concepts and Prospects
,”
Comput Ind.
0166-3615,
29
(
2
), pp.
217
233
.
21.
Sundararajan
,
V.
, and
Wright
,
P.
, 2004, “
Volumetric Feature Recognition for Machining Components with Freeform Surfaces
,”
Comput.-Aided Des.
0010-4485,
36
(
1
), pp.
11
25
.
22.
Braid
,
I. C.
, 1974,
Designing with Volumes
, 2nd ed.,
Cantab
, Cambridge.
23.
Chien
,
R. T.
, and
Woo
,
T. C.
, 1975, “
Automatic Program Synthesis—From CAD to CAM
,”
Procs AFIPS Conference
, National Computer Conference, Vol.
44
, pp.
813
817
.
24.
Woo
,
T. C.
, 1975, “
Computer Understanding of Design
”, Ph.D. thesis, University of Illinois, Urbana, IL.
25.
Grayer
,
A. R.
, 1975, “
A Computer Link between Design and Manufacture
,” Ph.D. thesis University of Cambridge, Cambridge.
26.
Kyprianou
,
L. K.
, 1980, “
Shape Classification in Computer Aided Design
,” Ph.D. thesis, Christ College, University of Cambridge, Cambridge.
27.
Henderson
,
M. R.
, 1984, “
Extraction of Feature Information from Three-Dimensional CAD Data
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
28.
Corney
,
J. R.
, 1993, “
Graph-Based Feature Recognition
,” Ph.D. thesis, Heriot-Watt University.
29.
Vandenbrande
,
J.
, and
Requicha
,
A. A.
, 1990, “
Spatial Reasoning for Automatic Recognition of Interacting Features
,”
Procs ASME DETC CIE
, Boston, MA, Vol.
1
, pp.
251
256
.
30.
Han
,
H.
, and
Requicha
,
A. A. G.
, 1996, “
Hint Generation and Completion for Feature Recognition
,” in
Proceedings of the International Symposium on Automotive Technology and Automation (ISATA)
, pp.
89
96
,
31.
Nau
,
D. S.
,
Gupta
S. K.
,
Kramer
,
T. R.
,
Regli
,
W. C.
,
Zhang
,
G.
, 1993, “
Development of Machining Alternatives Based on MRSEVs
,”
Procs ASME DETC CIE
, San Diego, CA, Vol.
1
, pp.
47
58
.
32.
Regli
,
W. C.
, and
Gaines
,
D. M.
, 1997, “
An Overview of the NIST Repository for Design, Process Planning, and Assembly
,”
Comput.-Aided Des.
0010-4485,
29
(
12
), pp.
895
905
.
33.
Rosen
,
D.
, and
Han
,
J. H.
, 1998, “
Special Panel Session for Feature Recognition at the 1997 ASME Computers in Engineering Conference
,”
Comput.-Aided Des.
0010-4485,
30
(
13
), pp.
979
982
.
34.
Han
,
J. H.
,
Regli
,
W. C.
, and
Rosen
,
D.
, 1997, “
Special Panel Session for Feature Recognition
,”
Procs ASME DETC/CIE
, Sacramento, CA, CD-ROM: DETC97/CIE-4423.
35.
Sonthi
,
R.
, and
Gadh
,
R.
, 1997, “
MMCs and PPCs as Constructs of Curvature Regions for Form Feature Determination
,”
Procs ASME DETC/CIE
, Sacramento, CA, CD-ROM: DETC97/CIE-4424.
36.
Wang
,
E.
, and
Kim
,
Y. S.
, 1997, “
Status of the Form Feature Recognition Method Using Convex Decomposition
,”
Procs ASME DETC/CIE
, Sacramento, CA, CD-ROM: DETC97/CIE-4425.
37.
Little
,
G.
,
Tuttle
,
R.
,
Clark
,
D. E. R.
, and
Corney
,
J.
, 1997, “
The Heriot-Watt FeatureFinder: A Graph-Based Approach to Recognition
,”
Procs ASME DETC/CIE
, Sacramento, CA, CD-ROM: DETC97/CIE-4426.
38.
Han
,
J. H.
,
Regli
,
W. C.
, and
Brooks
,
S.
, 1997, “
Hint-Based Reasoning for Feature Recognition: Status Report
,”
Procs ASME DETC/CIE
, Sacramento, CA, CD-ROM: DETC97/CIE-4485.
39.
Regli
,
W.
,
Gupta
,
S.
, and
Nau
,
D.
, 1995, “
Extracting Alternative Machining Features—An Algorithmic Approach
,”
Res. Eng. Des.
0934-9839,
7
(
3
), pp.
173
192
.
40.
Kim
,
Y. S.
, 1994, “
Volumetric Feature Recognition Using Convex Decomposition
,” in
Advances in Feature Based Manufacturing
, eds.
J.
Shah
et al.
,
Elsevier
, NY, Chap. 3.
41.
Kim
,
Y. S.
, 1991, “
Form Feature Recognition by Convex Decomposition
,”
Procs ASME, DETC/CIE
, Santa Clara, CA, Vol.
1
, pp.
61
71
.
42.
Chang
,
T.-C.
, 1990,
Expert Process Planning for Manufacturing
,
Addison-Wesley
, Reading, MA.
43.
Cutkosky
,
M.
, and
Tenenbaum
,
J. M.
, 1992, “
Towards a Framework for Concurrent Design
,”
Int. J. Syst. Autom.: Res. Appl.
1055-8462,
1
(
3
), pp.
239
261
.
44.
Woo
,
T.
, 1982, “
Feature Extraction by Volume Decomposition
,”
Proceedings of the Conference on CAD/CAM Technology in Mechanical Engineering
, MIT, Cambridge, MA.
45.
Waco
,
D.
, and
Kim
,
Y. S.
, 1993, “
Considerations in Positive to Negative Conversion from Machining Features Using Convex Decomposition
,”
Procs ASME DETC/CIE
, San Diego, CA, Vol.
1
, pp.
35
46
.
46.
Christensen
,
N. C.
,
Emory
,
J. D.
, and
Smith
,
M. L.
, 1983, “
Phoenix Method for Automatic Conversion between Geometric Models
,”
Allied Signal Incorporated
, Kansas City, MO, US Patent No. 728367.
47.
Sakurai
,
H.
, and
Chin
,
C.
, 1994, “
Definition and Recognition of Volume Features for Process Planning
,” in
Advances in Feature Based Manufacturing
,”
J.
Shah
,
M.
Mäntylä
, and
D.
Nau
, eds.,
Elsevier
, NY.
48.
Shah
,
J. J.
,
Shen
Y.
, and
Shirur
,
A.
, 1994, “
Determination of Machining Volumes from Extensible Sets of Design Features
,” in
Advances in Feature Based Manufacturing
,”
J.
Shah
,
M.
Mäntylä
, and
D.
Nau
, eds.,
Elsevier
, NY.
49.
Tseng
,
Y.-J.
, and
Joshi
,
S. B.
, 1994,“
Recognizing Multiple Interpretations of Interacting Machining Features
,”
Comput.-Aided Des.
0010-4485,
26
(
9
), pp.
667
688
.
50.
Sakurai
,
H.
, and
Dave
,
P.
, 1996, “
Volume Decomposition and Feature Recognition, Part II: Curved Objects
,
Comput.-Aided Des.
0010-4485,
28
(
6-7
), pp.
519
537
.
51.
Kramer
,
T. R.
, 1989, “
A Parser that Converts a Boundary Representation into a Features Representation
,”
Int. J. Comput. Integr. Manuf.
0951-192X,
2
(
3
), pp.
154
163
.
52.
Chuang
,
S. H.
, and
Henderson
,
M. R.
, 1990, “
Three-Dimensional Shape Pattern Recognition using Vertex Classification and the Vertex-Edge Graph
,”
Comput.-Aided Des.
0010-4485,
22
(
6
), pp.
377
387
.
53.
Sakurai
,
H.
, and
Gossard
,
D. C.
, 1990, “
Recognizing Shape Features in Solid Models
,”
IEEE Comput. Graphics Appl.
0272-1716,
10
(
5
), pp.
22
32
.
54.
Vandenbrande
,
J. H.
, and
Requicha
,
A. A. G.
, 1993, “
Spatial Reasoning for the Automatic Recognition of Machinable Features in Solid Models
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
15
(
12
), pp.
1
7
.
55.
Regli
,
W. C.
, 1995, “
Geometric Algorithms for Recognition of Features from Solid Models
,” Ph.D. thesis, The University of Maryland, College Park, MD.
56.
Brooks
,
S. L.
, and
Greenway
,
R. B.
, Jr.
, 1995, “
Using STEP to Integrate Design Features with Manufacturing Features
,
ASME DETC CIE
, Boston, MA, Vol.
1
: pp.
579
586
.
57.
Gaines
,
D. M.
, and
Hayes
,
C. C.
, 1999, “
Custom-Cut: A Customizable Feature Recognizer
,”
Comput.-Aided Des.
0010-4485,
31
(
2
), pp.
85
100
.
58.
Kulkarni
,
P.
,
Marsan
,
A.
, and
Dutta
,
D.
, 2000, “
A Review of Process Planning Techniques in Layered Manufacturing
,”
Rapid Prototyping J.
1355-2546,
6
(
1
), pp.
18
35
.
59.
Qian
,
X.
, and
Dutta
,
D.
, 2001, “
Feature Based Fabrication in Layered Manufacturing
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
337
345
.
60.
Kim
,
K. K.
,
Bourne
,
D.
,
Gupta
,
S.
, and
Krishnan
,
S. S.
, 1998, “
Automated Process Planning for Robotic Sheet Metal Bending Operations
,”
J. Manuf. Syst.
0278-6125,
17
(
5
), pp.
338
360
.
61.
Cheok
,
B. T.
, and
Nee
,
A. Y. C.
, 1998, “
Trends and Developments in the Automation of Design and Manufacture of Tools for Metal Stampings
,”
J. Mater. Process. Technol.
0924-0136,
75
(
1-2
), pp.
240
252
.
62.
Bosch
,
F.
, and
Bianchini
,
G.
, 1996, “
Developing a Flat Blank Layout
,”
Stamping Quarterly
, May/June.
63.
Li
,
C.
,
Jianjun
,
J.
,
Li Wen
,
J.
and
Xiao
,
X.
, 2001, “
HPRODIE: Using Feature Modelling and Feature Mapping to Speed up Progressive Die Design
,”
Int. J. Prod. Res.
0020-7543,
39
(
18
), pp.
4133
4151
.
64.
Hardwick
,
M.
, 2004, “
On STEP-NC and the Complexities of Product Data Integration
,”
J. Comput. Inf. Sci. Eng.
1530-9827,
4
(
1
), pp.
60
67
.
65.
Rosso
,
R. S. U.
,
Allen
,
R. D.
, and
Newman
,
S. T.
, 2002,
Procs 19th International Manufacturing Conference (IMC)
, Belfast, NI, pp.
115
124
.
66.
Yamakawa
,
S.
, and
Shimada
,
K.
, 2005, “
Polygon Crawling: Feature-Edge Extraction from a General Polygonal Surface for Mesh Generation
,”
Procs 14th International Meshing Roundtable
, San Diego, CA.
67.
Henderson
,
M. R.
,
Srinath
,
G.
,
Stage
,
R.
,
Walker
,
K.
, and
Regli
,
W.
, 1994,“
Boundary Representation Based Feature Identification
,” in
Advances in Feature Based Manufacturing
,”
J.
Shah
,
M.
Mäntylä
, and
D.
Nau
, eds.,
Elsevier
, NY.
68.
Schmitz
,
J. M.
, and
Desa
,
S.
, 1989, “
The application of a design for producibility methodology to complex stamped products
” in
Concurrent Product and Process Design, ASME Winter Annual Meeting
,
N. H.
Chao
and
S. C. Y.
Lu
, eds.,
ASME
, NY, pp.
169
174
.
69.
Tang
,
D.-B.
,
Zhen
,
L.
, and
Li
,
Z.-Z.
, 2001, “
An Intelligent Feature-Based Design for Stamping System
,
Int. J. Adv. Manuf. Technol.
0268-3768,
18
, pp.
193
200
.
You do not currently have access to this content.