This paper describes an algorithm to select the cheapest tool sequence for machining 2.5D pockets using the milling process when the stock is uneven (noncylindrical). Uneven stock is generated when multiple setups are used to machine a prismatic part. Even though the pockets have flat bottom faces, the amount of material to be removed will vary along the depth of the pocket. This research has developed algorithms for finding accessible areas for tools, and pocket decomposition when the stock is uneven. Finally, it is shown that tool sequence selection problem can be formulated as the shortest path problem in a single-source, single-sink directed acyclic graph.

1.
Bala
,
M.
, and
Chang
,
T. C.
, 1991, “
Automatic Cutter Selection and Cutter Path Generation for Prismatic Parts
,”
Int. J. Prod. Res.
0020-7543,
29
(
11
), pp.
2163
2176
.
2.
Arya
,
S.
,
Cheng
,
S. W.
, and
Mount
,
D. M.
, 2001, “
Approximate Algorithm for Multiple-Tool Milling
,”
Int. J. Comput. Geom. Appl.
0218-1959,
11
(
3
), pp.
339
372
.
3.
Chen
,
Y.
,
Lee
,
Y. S.
, and
Fang
,
S. C.
, 1998, “
Optimal Cutter Selection and Machining Plane Determination for Process Planning
,”
J. Manuf. Syst.
0278-6125,
17
(
5
), pp.
371
388
.
4.
Lim
,
T.
,
Corney
,
J.
,
Ritchie
,
J. M.
, and
Clarke
,
D. E. R.
, 2001, “
Optimizing Automatic Tool Selection for 2.5D and 3D NC Surface Machining
,”
Int. J. Prod. Res.
0020-7543,
39
(
6
), pp.
1239
1256
.
5.
Kunwoo
,
L.
,
Kim
,
T. J.
, and
Hong
,
S. E.
, 1994, “
Generation of Tool Paths With Selection of Proper Tools for Rough Machining
,”
Comput.-Aided Des.
0010-4485,
26
(
11
), pp.
163
180
.
6.
Joo
,
J.
, and
Cho
,
H.
, 1999, “
Efficient Sculpted Pocket Machining Using Feature Extraction and Conversion
,”
J. Manuf. Syst.
0278-6125,
18
(
2
), pp.
100
112
.
7.
Lee
,
Y. S.
, and
Chang
,
T. C.
, 1995, “
Application of Computational Geometry in Optimization of 2.5D and 3D NC Surface Machining
,”
Comput Ind.
0166-3615,
26
(
1
), pp.
41
59
.
8.
Veeramani
,
D.
, and
Gau
,
Y. S.
, 1997, “
Selection of an Optimal Set of Cutting Tool Sizes for 2.5D Pocket Machining
,”
Comput.-Aided Des.
0010-4485,
29
(
12
), pp.
869
877
.
9.
Yao
,
Z.
,
Gupta
,
S. K.
, and
Nau
,
D. S.
, 2001, “
A Geometric Algorithm for Finding the Largest Milling Cutter.
,”
J. Manuf. Process.
1526-6125,
3
(
1
), pp.
1
16
.
10.
D’Souza
,
R.
,
Wright
,
P. K.
, and
Sequin
,
C. H.
, 2001, “
Automated Microplanning for 2.5D Pocket Machining
,”
J. Manuf. Syst.
0278-6125,
20
(
4
), pp.
288
196
.
11.
Cormen
,
T.
,
Leiserson
,
C.
, and
Rivest
,
R.
, 1997,
Introduction to Algorithms
,
McGraw-Hill
,
New York
.
12.
Spatial Technology, ACIS Geometric Modeler, API Reference, 1994.
You do not currently have access to this content.