This paper describes a novel method for automated process planning for boring of turned components with arbitrary internal geometry from a semi-finished stock. Earlier work has been reported on process planning for boring of components with monotonic internal geometry made from bar stock. This paper addresses the more general problem of process planning of parts with nonmonotonic internal geometry from arbitrary given the initial geometry, i.e., from a casting or from a semi-finished stock. With the algorithms developed, we are able to achieve full automation of all aspects of the process plan, including operations sequencing, parameter selection, numerical control (NC) code generation, etc. Thus, it becomes possible to go from design to NC code in a fully automated fashion. In the present work we focus on a tightly defined part family, which results in very simple but robust automation algorithms. This is in contrast to much of the reported work on automated process planning, which generally targets broad part families, leading to complex algorithms that fall short of complete design-to-NC automation.

1.
Kals
,
H. J. J.
, 1986, “
Strategy in Generative Planning of Turning Processes
,”
CIRP Ann.
0007-8506
35
, pp.
331
335
.
2.
Zhang
,
H. C.
, and
Alting
,
L.
, 1988, “
XPLAN-R: An Expert Process Planning System for Rotational Components
,”
IIE Integrated Systems Conference Proceedings
, pp.
54
65
.
3.
Zhang
,
S.
, and
Gao
,
W. D
., 1984, “
TOJICAP—A System of Computer Aided Process Planning of Rotational Parts
,”
CIRP Ann.
0007-8506
33
, pp.
299
301
.
4.
Pande
,
S. S.
, and
Desai
,
V. S.
, 1995, “
Expert CAPP System for Single Spindle Automats
,”
Int. J. Prod. Res.
0020-7543
33
, pp.
819
833
.
5.
Alting
,
L.
, and
Zhang
,
H.
, 1989, “
Computer Aided Process Planning: The State-of-the-Art Survey
,”
Int. J. Prod. Res.
0020-7543
27
, pp.
553
585
.
6.
Tseng
,
Y. J.
, and
Joshi
,
S. B.
, 1998, “
Recognition of Interacting Rotational and Prismatic Machining Features from 3-D Mill-turn Parts
,”
Int. J. Prod. Res.
0020-7543
36
, pp.
3147
3165
.
7.
Chep
,
A.
, and
Tricarico
,
L.
, 1999, “
Object-Oriented Analysis and Design of a Manufacturing Feature Representation
,”
Int. J. Prod. Res.
0020-7543
37
, pp.
2349
2376
.
8.
Reddy
,
S. V. B.
,
Shunmugam
,
M. S.
, and
Narendran
,
T. T.
, 1999, “
Operation Sequencing in CAPP Using Genetic Algorithms
,”
Int. J. Prod. Res.
0020-7543
34
, pp.
1063
1074
.
9.
Case
,
K.
, and
Wanharun
,
W. A.
, 2000, “
Feature-Based Representation for Manufacturing Planning
,”
Int. J. Prod. Res.
0020-7543
38
, pp.
4285
4300
.
10.
Li
,
W. D.
,
Ong
,
S. K.
, and
Nee
,
A. Y. C.
, 2002, “
Recognizing Manufacturing Features from a Design-by-Feature Model
,”
Comput.-Aided Des.
0010-4485
34
, pp.
849
868
.
11.
Zhao
,
Y.
,
Ridgway
,
K.
, and
Al-Ahmari
,
A. M. A.
, 2002, “
Integration of CAD and a Cutting Tool Selection System
,”
Comput. Ind. Eng.
0360-8352
42
, pp.
17
34
.
12.
Vittal
,
V. N.
,
Jain
,
V. K.
, and
Shankar
,
K.
, 1990, “
A Computer-Aided Process Planning System for Rotational Parts (CAPP - RP) for an FMS Environment
,”
Int. J. Comput. Appl. Technol.
0952-8091
3
, pp.
61
69
.
13.
Imam
,
S. K.
,
Chadda
,
Y. S.
, and
Qureshi
,
N.
, 1992, “
Micro-Based Expert Computer Aided Process Planning System (MICRO-CAPP) for Turning Parts
,”
Proceedings of the 7th IFAC/IFIP/IFORS/IMACS/ISPE Symposium on Information Control Problems in Manufacturing Technology
, pp.
325
328
.
14.
Mognol
,
P.
, and
Anselmetti
,
B.
, 1994, “
Automatic Process Planning in Turning: Generation by Progressive Evaluation
,”
J. Des. Manuf.
0962-4694
4
, pp.
87
93
.
15.
Wang
,
M.-Tz.
,
Waldron
,
M. B.
, and
Miller
,
A. R.
, 1990, “
A Prototype Integrated Feature-Based Design and Expert Process Planning System for Rotational Parts
,”
ASME International Computers in Engineering Conference and Exposition
, pp.
33
40
.
16.
Abou-Zeid
,
M. R.
,
Houman
,
M. A. S.
, and
Amaitik
,
S. M.
, 1998, “
Computer-Aided Interactive Process Planning for Turning (CAIPP)
,”
Alexandria Eng. J.
1110-0168
37
, pp.
A1
A15
.
17.
Jayaraman
,
V.
, 2000, “
CAD/CAPP System for Mill-Turn Components, An Object-Oriented Design
,” M.S. thesis, Kansas State University, Manhattan, KS. Relevant material ⟨http://www-personal.ksu.edu/~satish/JCISE88/vishwanath.pdfhttp://www-personal.ksu.edu/~satish/JCISE88/vishwanath.pdf
18.
Shunmugam
,
K.
, 1998, “
An Object-Oriented Automated Production Environment for Mill-Turn Parts
,” M.S. thesis, Kansas State University, Manhattan, KS. Relevant material ⟨http://www-personal.ksu.edu/~satish/JCISE88/shunmugam.pdfhttp://www-personal.ksu.edu/~satish/JCISE88/shunmugam.pdf
19.
Date
,
N.
, 2000, “
Feature-Based Design and Manufacture of Mill-Turn Components
,” M.S. thesis, Kansas State University, Manhattan, KS. Relevant material ⟨http://www-personal.ksu.edu/~satish/JCISE88/date.pdfhttp://www-personal.ksu.edu/~satish/JCISE88/date.pdf
20.
Metcut Research Associates.
, 1972,
Machining data handbook
,
Machinability Data Center
, Cincinnati.
21.
Motipalli
,
V. V. S.
, 2002, “
Automation of Internal Process Planning for Mill-Turn Components
,” M.S. thesis, Kansas State University, Manhattan, KS. Relevant material ⟨http://www-personal.ksu.edu/~satish/JCISE88/Satish.pdfhttp://www-personal.ksu.edu/~satish/JCISE88/Satish.pdf⟩.
22.
Lazcano
,
J.
, 1992, “
An Intelligent Feature-Based CAD/CAPP System for Rotational Parts
,” M.S. thesis, Kansas State University, Manhattan, KS.
23.
Shah
,
J. J.
, and
Zhang
,
B. C.
, 1992, “
Attributed Graph Model for Geometric Tolerancing
,”
Adv. Design Automat.
2
, pp.
133
140
.
24.
Shah
,
J. J.
,
Yan
,
Y.
, and
Zhang
,
B. C.
, 1998, “
Dimension and Tolerance Modeling and Transformations in Feature-Based Design and Manufacturing
,”
J. Intell. Manuf.
0956-5515
9
, pp.
475
488
.
25.
Huang
,
S. H.
, and
Xu
,
N.
, 2003, “
Automatic Setup Planning for Metal Cutting: An Integrated Methodology
,”
Int. J. Prod. Res.
0020-7543
41
, pp.
4339
4356
.
26.
Huang
,
S. H.
, 1998, “
Automated Setup Planning for Lathe Machining
,”
J. Manuf. Syst.
0278-6125
17
, pp.
196
208
.
You do not currently have access to this content.