The problems of the substitute geometry for features of size are considered and an algorithm for synthesis of the substitute features (SF) is developed. Three and only three classes of surfaces are proved to have an incomplete set of position and orientation deviations within the SF equation: cylinders with any directrix, surfaces of revolution with any meridian, and helical surfaces with any profile. The form accuracy of multidimensional features relating to these classes is considered: ellipsoid of revolution, epitrochoidal cylinder, and Archimedean screw. The deterministic consideration is accompanied by evaluation of the uncertainty of the standard assessments of the geometric accuracy and capacity of the computing procedure.
Issue Section:
Technical Papers
1.
Anthony
, G. T.
, Anthony
, H. M.
, Bittner
, B.
, Butler
, B. P.
, Cox
, M. G.
, Drischner
, R.
, Elligsen
, R.
, Forbes
, A. B.
, Gross
, H.
, Hannaby
, S. A.
, Harris
, P. M.
, and Kok
, J.
, 1996, “Reference Software for Finding Chebyshev Best-Fit Geometric Elements
,” Precis. Eng.
0141-6359, 19
, pp. 28
–36
.2.
Humienny
, Z.
, ed., 2001, Geometrical Product Specifications
, Warsaw University of Technology Press
, Warsaw, Poland
.3.
Wang
, H.
, Pramaric
, N.
, Roy
, U.
, et al., 2002, “A Scheme for Transformation of Tolerance Specifications to Generalized Deviations Space for Use in Tolerance Synthesis and Analysis
,” Proceedings DETC’02, ASME 2002 Design Engineering Technical Conference
, Montreal, Canada
.4.
Dimensioning and Tolerancing, An ASME National Standard, ASME Y14.5M-1994
, New York, N.Y.5.
Mathematical Definition of Dimensioning and Tolerancing Principles, An ASME National Standard, ASME Y14.5.1M-1994
, New York, N.Y.6.
Mathieu
, L.
, Clement
, A.
, and Bourdet
, P.
, 1998, Modeling, Representation, and Processing of Tolerances, Geometric Design Tolerancing
, Chapman & Hall
, London
, pp. 1
–33
.7.
Hong
, Y.
, and Chang
, T.-C.
, 2002, “Tolerancing Algebra: A Building Block for Handling Tolerance Interactions in Design and Manufacturing. Part 1
,” Int. J. Prod. Res.
0020-7543, 40
(18
), pp. 4633
–4649
.8.
Pasurathy
, T. M. K.
, Morse
, E. P.
, and Wilhelm
, R. G.
, 2003, “A Survey of Mathematical Methods for the Construction of Geometric Tolerance Zone
,” J. Comput. Inf. Sci. Eng.
1530-9827, 3
, pp. 64
–75
.9.
Laperriere
, L.
, Chie
, W.
, and Desrochers
, A.
, 2002, “Statistical and Deterministic Tolerance Analysis and Synthesis Using Unified Jacobian-Torsor Model
,” CIRP Ann.
0007-8506, 51
(1
), pp. 417
–420
.10.
Roy
, U.
, Pramanik
, N.
, Sudaran
, R.
, Sriram
, R.
, and Lyons
, K.
, 2001, “Function-to-Form Mapping: Model, Representation and Application in Design Synthesis
,” CAD
0010-4485, 33
(10
), pp. 699
–720
.11.
Portman
, V.
, Shuster
, V.
, Rubenchick
, Y.
, and Shneor
, Y.
, 2004, “Substitute Geometry of Multidimensional Features
,” CIRP Ann.
0007-8506, 53
(1
), pp. 443
–446
.12.
Portman
, V.
, Weill
, R.
, and Shuster
, V.
, 1997, “Variational Method for Assessment of Toleranced Features
,” Proceedings 5th CIRP Int. Seminar on Computer Aided Tolerancing
, Toronto, Canada
, April 27–29, pp. 83
–97
.13.
Portman
, V.
, Weill
, R.
, Shuster
, V.
, and Rubenchick
, Y.
, 2003, “Linear-Programming-Based Assessment of Geometrical Accuracy
,” Int. J. Mach. Tools Manuf.
0890-6955, 43
(10
), pp. 1023
–1033
.14.
Korn
, G.
, and Korn
, T.
, 1968, Mathematical Handbook for Scientists and Engineers
, 2nd ed., McGraw–Hill
, New York
, p. 488
.15.
Bensinger
, W. D.
, 1973, Rotationskolben-Vebrennungsmotoren
, Springer
, Berlin
.16.
Wolfram
, S.
, 1991, Mathematica: A System for doing Mathematics by Computer
, 2nd ed., Addison Wesley
, New York
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.