Integrating computational tasks in coordinate metrology and its effect on the inspection’s uncertainty is studied. It is shown that implementation of an integrated inspection system is crucial to reduce the uncertainty in minimum deviation zone (MDZ) estimation. An integrated inspection system based on the iterative search procedure and online MDZ estimation is presented. The search procedure uses the Parzen Windows technique to estimate the probability density function of the geometric deviations between the actual and substitute surfaces. The computed probability density function is used to recognize the critical points in the MDZ estimation and to identify portions of the surface that require further iterative measurements until the desired level of convergence is achieved. Reduction of the uncertainty in the MDZ estimation using the developed search method compared to the MDZ estimations using the traditional sampling methods is demonstrated by presenting experiments including both actual and virtual inspection data. The proposed search method can be used for assessing any geometric deviations when no prior assumptions about the fundamental form and distribution of the underlying manufacturing errors are required. The search method can be used to inspect and evaluate both primitive geometric features and complicated sculptured surfaces. Implementation of this method reduces inspection cost as well as the cost of rejecting good parts or accepting bad parts.

1.
Barari
,
A.
,
ElMaraghy
,
H. A.
, and
Knopf
,
G. K.
, 2005, “
Evaluation of Geometric Deviations in Sculptured Surfaces Using Probability Density Estimation
,”
CD Proceedings of Ninth CIRP International Seminar on Computer Aided Tolerancing
,
Tempe, AZ
.
2.
Parzen
,
E.
, 1962, “
On Estimation of a Probability Density Function and Mode
,”
Ann. Math. Stat.
0003-4851,
33
, pp.
1065
1076
.
3.
Yau
,
H. T.
, 1999, “
A Model-Based Approach to Form Tolerance Evaluation Using Non-Uniform Rational B-Splines
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
15
, pp.
283
295
.
4.
Nassef
,
A. O.
, and
ElMaraghy
,
H. A.
, 1999, “
Determination of Best Objective Function for Evaluating Geometric Deviations
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
15
, pp.
90
95
.
5.
Hopp
,
T.
, 1993, “
Computational Metrology
,”
Manuf. Rev.
0896-1611,
6
(
4
), pp.
295
304
.
6.
Choi
,
W.
,
Kurfess
,
T. R.
, and
Cagan
,
J.
, 1998, “
Sampling Uncertainty in Coordinate Measurement Data Analysis
,”
Precis. Eng.
0141-6359,
22
, pp.
153
163
.
7.
Lin
,
S. S.
,
Varghese
,
P.
,
Zhang
,
C.
, and
Wang
,
H. B.
, 1995, “
A Comparative Analysis of CMM Form-Fitting Algorithms
,”
Manuf. Rev.
0896-1611,
8
(
1
), pp.
47
58
.
8.
Hocken
,
R.
,
Raja
,
J.
, and
Babu
,
U.
, 1993, “
Sampling Issue in Coordinate Metrology
,”
Manuf. Rev.
0896-1611,
6
(
4
), pp.
282
294
.
9.
ElMaraghy
,
H. A.
,
Barari
,
A.
, and
Knopf
,
G. K.
, 2004, “
Integrated Inspection and Machining for Maximum Conformance to Design Tolerances
,”
CIRP Ann.
0007-8506,
53
(
1
), pp.
411
416
.
10.
Caskey
,
G.
,
Hari
,
Y.
,
Hocken
,
R.
,
Palanvelu
,
D.
,
Raja
,
J.
,
Wilson
,
R.
,
Chen
,
K.
, and
Yang
,
J.
, 1991, “
Sampling Techniques for Coordinate Measuring Machines
,”
Proceedings of NSF Design and Manufacturing Systems Conference
, pp.
983
988
.
11.
Weckenmann
,
A.
,
Heinrichowski
,
M.
, and
Mordhorst
,
H. J.
, 1991, “
Design of Gauges and Multipoint Measuring Systems Using Coordinate Measuring Machine Data and Computer Simulation
,”
Precis. Eng.
0141-6359,
13
, pp.
203
207
.
12.
Weckenmann
,
A.
,
Eitzert
,
H.
,
Garmer
,
M.
, and
Webert
,
H.
, 1995, “
Functionality Oriented Evaluation and Sampling Strategy in Coordinate Metrology
,”
Precis. Eng.
0141-6359,
17
, pp.
244
251
.
13.
Edgeworth
,
R.
, and
Wilhelm
,
R. G.
, 1999, “
Adaptive Sampling for Coordinate Metrology
,”
Precis. Eng.
0141-6359,
23
, pp.
144
154
.
14.
Elkott
,
D.
,
ElMaraghy
,
H. A.
, and
ElMaraghy
,
W. H.
, 2002, “
Automatic Sampling for CMM Inspection Planning of Free-Form Surfaces
,”
Int. J. Prod. Res.
0020-7543,
40
(
11
), pp.
2653
2676
.
15.
Efron
,
B.
, and
Tibshirani
,
R. J.
, 1993,
An Introduction to the Bootstrap
,
Chapman and Hall
,
London
.
16.
Sprauel
,
J. M.
,
Linares
,
J. M.
,
Bachmann
,
J.
, and
Bourdet
,
P.
, 2003, “
Uncertainties in CMM Measurements: Control of ISO Specifications
,”
CIRP Ann.
0007-8506,
52
(
1
), pp.
423
426
.
17.
Duda
,
R. O.
, and
Hart
,
P. E.
, 1973,
Pattern Classification and Scene Analysis
,
Wiley
,
New York
.
18.
Choi
,
W.
, and
Kurfess
,
T. R.
, 1998, “
Uncertainty of Extreme Fit Evaluation for Three-Dimensional Measurement Data Analysis
,”
Comput.-Aided Des.
0010-4485,
30
(
7
), pp.
549
557
.
19.
BIPM
,
IEC
,
IFCC
,
ISO
,
IUPAC
,
IUPAP
, and
OIML
, 1995, “
Guide to the Expression of Uncertainty in Measurement
,” 1st ed.
You do not currently have access to this content.