The energy efficiency of rail transit systems using regenerative braking is enhanced by flywheel storage elements used to store energy not accepted by the wayside power rail. In this paper three storage system control concepts are examined: armature and field control of on-board flywheels, and field control of a station-based storage device. The energy recovery efficiency and performance characteristics of each system are determined subject to optimal control laws derived to minimize energy loss. The resulting control systems are bilinear, due to the use of separately excited DC traction and flywheel motors as continuously variable transmissions. The three systems yield similar energy recovery efficiencies for deceleration, with the advantages of each for practical applications discussed.

This content is only available via PDF.
You do not currently have access to this content.