A wide class of mechanical systems with uncertainties can be modeled through a state equation in parametric-pure-feedback form. Thus, in principle, the well-known backstepping design procedure can be applied to solve a regulation or a tracking problem. Yet, this is no more possible if a clear parametric dependence on the control signal (torque or force) cannot be established. Systems to which this happens can be efficaciously controlled via the proposed approach which inherits n−1 steps of the classical backstepping procedure. This latter procedure is used to attain a partial system state transformation, completed with the construction of a suitable sliding manifold upon which a second order sliding mode is enforced. [S0022-0434(00)01901-8]

1.
Kanellakopoulos
,
I.
,
Kokotovic´
,
P. V.
, and
Morse
,
A. S.
,
1991
, “
Systematic Design of Adaptive Controllers for Feedback Linearizable Systems
,”
IEEE Trans. Autom. Control.
,
36
, pp.
1241
1253
.
2.
Krstic´
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic´
,
P. V.
,
1992
, “
Adaptive Nonlinear Control Without Over-Parameterization
,”
Systems Control Lett.
,
19
, pp.
177
185
.
3.
Krstic´
,
M.
, and
Kokotovic´
,
P. V.
,
1995
, “
Adaptive Nonlinear Design with Controller-Identifier Separation and Swapping
,”
IEEE Trans. Autom. Control.
,
40
, pp.
426
440
.
4.
Nam
,
K.
, and
Arapostathis
,
A.
,
1988
, “
A Model Reference Adaptive Control Scheme for Pure-Feedback Non Linear Systems
,”
IEEE Trans. Autom. Control.
,
33
, pp.
803
811
.
5.
Seto
,
D.
,
Annaswamy
,
A. M.
, and
Baillieul
,
J.
,
1994
, “
Adaptive Control of a Class of Nonlinear Systems with a Triangular Structure
,”
IEEE Trans. Autom. Control.
,
39
, pp.
1411
1428
.
6.
Utkin, V. I., 1992, Sliding Modes In Control And Optimization, Springer-Verlag, Berlin.
7.
Zinober, A. S. I. ed., 1994, Variable Structure and Lyapunov Control, Springer-Verlag, London.
8.
Bartolini, G., and Ferrara, A., 1994, “Model-Following VSC Using an Input-Output Approach,” Variable Structure and Lyapunov Control, A.S.I. Zinober, ed., Springer-Verlag, London, pp. 289–312.
9.
Narendra
,
K. S.
, and
Boskovic
,
J. D.
,
1989
, “
A Combined Direct, Indirect and Variable Structure Method for Robust Adaptive Control
,”
IEEE Trans. Autom. Control.
,
37
, pp.
262
268
.
10.
Bartolini, G. Ferrara, A., Giacomini, L., and Usai, E., 1996, “A Combined Backstepping/Second Order Sliding Mode Approach to Control a Class of Nonlinear Systems,” Proc. IEEE International Workshop on Variable Structure Systems, Tokyo, Japan, pp. 205–210.
11.
Sira-Ramirez
,
H.
,
1992
, “
On the Sliding Mode Control of Nonlinear Systems
,”
Systems Control Lett.
,
19
, pp.
303
312
.
12.
Zinober, A. S. I., and Rios-Bolivar, E. M., 1994, “Sliding Mode Control for Uncertain Linearizable Nonlinear Systems: A Backstepping Approach,” Proc. IEEE Workshop on Robust Control via Variable Structure and Lyapunov Techniques, Benevento, Italy, pp. 78–85.
13.
Bartolini
,
G.
,
Ferrara
,
A.
, and
Usai
,
E.
,
1997
, “
Applications of a Suboptimal Discontinuous Control Algorithm for Uncertain Second Order Systems
,”
Int. J. Robust Nonlin. Control
,
7
, pp.
299
320
.
14.
Levant
,
A.
,
1993
, “
Sliding Order and Sliding Accuracy in Sliding Mode Control
,”
Int. J. Control
,
58
, pp.
1247
1263
.
15.
Spong, M. W., and Vidyasagar, M., 1989, Robot Dynamics and Control, Wiley, New York.
16.
Marino, R., and Nicosia, S., 1985, “Singular Perturbation Techniques in the Adaptive Controls of Elastic Robots,” Proc. 1st IFAC Symp. on Robot Control, Barcelona, pp. 95–100.
17.
Spong
,
M. W.
,
1987
, “
Modeling and Control of Elastic Joint Robots
,”
ASME J. Dyn. Syst., Meas., Control
,
109
, pp.
310
319
.
18.
Chang
,
Y.
, and
Daniel
,
R. W.
,
1992
, “
On the Adaptive Control of Flexible Joint Robots
,”
Automatica
,
28
, pp.
969
974
.
19.
Ge
,
S. S.
,
1996
, “
Adaptive Controller Design for Flexible Joint Manipulators
,”
Automatica
,
32
, pp.
273
278
.
20.
Spong
,
M. W.
,
1989
, “
Adaptive Control of Flexible Joint Robots
,”
Systems Control Lett.
,
13
, pp.
15
21
.
21.
Spong
,
M. W.
,
1995
, “
Adaptive Control of Flexible Joint Manipulators: Comments on Two Papers
,”
Automatica
,
31
, pp.
585
590
.
22.
Su
,
R.
, and
Hunt
,
L. R.
,
1986
, “
A Canonical Expansion for Nonlinear Systems
,”
IEEE Trans. Autom. Control.
,
31
, pp.
670
673
.
23.
Krstic´, M., Kanellakopoulos, I., and Kokotovic´, P. V., 1995, Nonlinear and Adaptive Control Design, Wiley, New York.
24.
Krstic´
,
M.
, and
Kokotovic´
,
P. V.
,
1994
, “
Observer-Based Schemes for Adaptive Nonlinear State-Feedback Control
,”
Int. J. Control
,
59
, No.
6
, pp.
1373
1381
.
25.
Jankovic
,
M.
,
1997
, “
Adaptive Nonlinear Output Feedback Tracking with a Partial High-Gain Observer and Backstepping
,”
IEEE Trans. Autom. Control.
,
42
, No.
1
, pp.
106
113
.
26.
Bartolini
,
G.
,
Ferrara
,
A.
, and
Usai
,
E.
,
1997
, “
Output Tracking Control of Uncertain Nonlinear Second-Order Systems
,”
Automatica
,
33
, No.
12
, pp.
2203
2212
.
27.
Li
,
Z.
, and
Krstic´
,
M.
,
1997
, “
Maximizing Regions of Attraction Via Backstepping and CLFs with Singularities
,”
Systems Control Lett.
,
30
, pp.
195
207
.
You do not currently have access to this content.