The Karhunen–Loe`ve Galerkin procedure (Park, H. M., and Cho, D. H., 1996, “Low Dimensional Modeling of Flow Reactors,” Int. J. Heat Mass Transf., 39, pp. 3311–3323) is a type of reduction method that can be used to solve linear or nonlinear partial differential equations by reducing them to minimal sets of algebraic or ordinary differential equations. In this work, the method is used in conjunction with a conjugate gradient technique to solve the boundary optimal control problems of the heat conduction equations. It is demonstrated that the Karhunen–Loe`ve Galerkin procedure is well suited for the problems of control or optimization, where one has to solve the governing equations repeatedly but one can also estimate the approximate solution space based on the range of control variables. Choices of empirical eigenfunctions to be employed in the Karhunen–Loe`ve Galerkin procedure and issues concerning the implementations of the method are discussed. Compared to the traditional methods, the Karhunen–Loe`ve Galerkin procedure is found to solve the optimal control problems very efficiently without losing accuracy. [S0022-0434(00)00603-1]

1.
Lausterer
,
G. K.
, and
Ray
,
W. H.
,
1979
, “
Distributed parameter state estimation and optimal feedback control—An experimental study in two space dimensions
,”
IEEE Trans. Autom. Control
,
AC-24
, p.
179
179
.
2.
Nulman
,
J.
Krusius
,
J. P
, and
Gat
,
A.
,
1985
, “
Rapid thermal processing of thin gate dielectrics-oxidation of silicon
,”
IEEE Electron Device Lett.
,
EDL-6
, p.
205
205
.
3.
Park
,
H. M.
, and
Cho
,
D. H.
,
1996
, “
The use of the Karhunen–Loe`ve decomposition for the modeling of distributed parameter systems
,”
Chem. Eng. Sci.
,
51
, pp.
81
98
.
4.
Park
,
H. M.
, and
Cho
,
D. H.
,
1996
, “
Low dimensional modeling of flow reactors
Int. J. Heat Mass Transf.
,
39
, pp.
3311
3323
.
5.
Loe`ve, M., 1995, Probability Theory, Van Nostrand, Princeton, NJ.
6.
Park
,
H. M.
, and
Sirovich
,
L.
,
1990
, “
Turbulent thermal convection in a finite domain: Numerical results
,”
Phys. Fluids A
,
2
, pp.
1659
1668
.
7.
Moin
,
P.
, and
Moser
,
R. D.
,
1989
, “
Characteristic-eddy decomposition of turbulence in a channel
,”
J. Fluid Mech.
,
200
, pp.
471
506
.
8.
Aubry
,
N.
,
Holmes
,
P.
,
Lumley
,
J. L.
, and
Stone
,
E.
,
1988
, “
The dynamics of coherent structures in the wall region of a turbulent boundary layer
,”
J. Fluid Mech.
,
192
, pp.
115
173
.
9.
Deane
,
A. E.
,
Kevrekidis
,
I. G.
,
Karniadakis
,
G. E.
, and
Orszag
,
S. A.
,
1991
, “
Low-dimensional models for complex geometry flows: Application to grooved channels and circular cylinders
,”
Phys. Fluids
,
3
, pp.
23
37
.
10.
Park
,
H. M.
, and
Lee
,
J. H.
,
1998
, “
A method of solving inverse convection problems by means of mode reduction
,”
Chem. Eng. Sci.
,
53
, pp.
1731
1744
.
11.
Baker
,
J.
, and
Christofides
,
P. D.
,
1999
, “
Nonlinear control of rapid thermal chemical vapor deposition under uncertainty
,”
Comput. Chem. Eng.
,
23
, pp.
233
236
.
12.
Christofides
,
P. D.
,
1998
, “
Robust control of parabolic PDE systems
,”
Chem. Eng. Sci.
,
53
, pp.
2449
2465
.
13.
Courant, R., and Hilbert, D., 1953, Methods of Mathematical Phyiscs, Vol. 1, Interscience Publishers, New York.
14.
Fletcher
,
R.
, and
Reeves
,
R. M.
,
1964
, “
Function minimization by conjugate gradients
,”
Comput. J. (UK)
,
7
, pp.
149
154
.
You do not currently have access to this content.